首页> 外文期刊>CrystEngComm >Axis symmetry of silicon molten zone interface shape under a mirror-shifting-type infrared convergent-heating floating-zone method
【24h】

Axis symmetry of silicon molten zone interface shape under a mirror-shifting-type infrared convergent-heating floating-zone method

机译:镜面位移型红外会聚加热浮区法下硅熔区界面形状的轴对称性

获取原文
获取原文并翻译 | 示例
           

摘要

The shape of the silicon crystal, whether spiral or cylindrical, was grown using the infrared convergent-heating floating-zone method, and the stability of the molten zone depended on the position of the mirror-lamp (M-L) system with respect to the grown crystal and molten zone. Through experiment, we studied the changes in the molten zone shape: the melt/feed, melt/gas, and melt/crystal interface shapes of the silicon molten zone under different positions of the M-L system. Although conventional parameters such as convexities (h/r) of the interface toward the melt were found to be independent of the position of the M-L system, the asymmetry of the zone length, L, was found to be inversely proportional to the distance of the M-L system from the center of the molten zone. A spiral crystal would be grown in this case. We introduce some parameters such as growth interface angle (delta), triple point angle (TPA), meniscus angle (MA), and altitude of the interface curvature (a(C)) to characterize the axis symmetry of the melt/gas and melt/crystal interfaces. The variations in TPA, MA, and a(C) were significantly reduced when the M-L system was shifted to a distant position from the center of the molten zone. On the other hand, the variations in delta were independent of the position of the M-L system. Thus, a symmetric molten zone was observed when the M-L system was at a distant rather than a close position. These behaviors were validated through observations of the molten zone stability and the crystal shape.
机译:硅晶体的形状(无论是螺旋形还是圆柱形)是使用红外会聚加热浮动区方法生长的,而熔融区的稳定性取决于镜灯(ML)系统相对于生长的位置晶体和熔融带。通过实验,我们研究了熔融区形状的变化:在M-L系统的不同位置,硅熔融区的熔融/进料,熔融/气体和熔融/晶体界面形状。尽管发现常规参数(例如,朝向熔体的界面的凸度(h / r))与ML系统的位置无关,但发现区域长度L的不对称度与ML系统的距离成反比。 ML系统从熔融区的中心开始。在这种情况下,将生长螺旋晶体。我们介绍了一些参数,例如生长界面角(delta),三点角(TPA),弯月角(MA)和界面曲率高度(a(C))来表征熔体/气体和熔体的轴对称性/ crystal接口。当M-L系统转移到距熔融区中心较远的位置时,TPA,MA和a(C)的变化显着降低。另一方面,增量的变化与M-L系统的位置无关。因此,当M-L系统处于远处而不是靠近位置时,观察到对称的熔融区。通过观察熔融区的稳定性和晶体形状来验证这些行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号