首页> 外文期刊>Multibody system dynamics >Space robot motion planning in the presence of nonconserved linear and angular momenta
【24h】

Space robot motion planning in the presence of nonconserved linear and angular momenta

机译:空间机器人运动规划在存在非经常线性和角度的动态

获取原文
获取原文并翻译 | 示例
           

摘要

On-orbit servicing, active debris removal or assembling large structures on orbit are only some of the tasks that could be accomplished by space robots. In all these cases, a contact between a space robot and the satellite being serviced, deorbited, or assembled will occur. This contact results in a contact force exerted on the space robot, and therefore momenta of the space robot system are no longer conserved. Most of the papers that are concerned with motion planning problems of a space robot manipulator either consider that no external forces or moments are acting on the space robot system or use additional controllers when the space robot is subjected to external forces and moments. Such a controller minimizes end-effector position and orientation errors caused by the changes in system momenta due to external forces and moments acting on this system. The novelty of this work is that it proposes a new method for planning the motion of dual-arm space robot manipulators when linear and angular momenta of the space robot system are not conserved due to external forces and moments acting on the space robot base or/and manipulators' end-effectors. In the proposed method the changes in system momenta are considered, but no additional controllers are needed. In this paper, we derive the motion planning equations for dual-arm space robot manipulators, where external forces and moments are acting on both satellite and manipulator end-effectors. The proposed method has been verified by numerical simulations, and the results are presented and discussed.
机译:在轨道上的维修,积极的碎片拆卸或组装大结构只是空间机器人可以实现的一些任务。在所有这些情况下,将发生空间机器人与正在维修,可吸附或组装的卫星之间的接触。这种接触导致施加在空间机器人上的接触力,因此不再保守空间机器人系统的动量。涉及空间机器人操纵器的运动计划问题的大多数论文认为,当空间机器人受到外力和时刻时,没有外力或时刻在空间机器人系统上作用或使用附加控制器。这种控制器最小化了由于在该系统上的外力和时刻引起的系统动力变化引起的末端效应位置和方向误差。这项工作的新颖性是,当空间机器人系统的线性和角动度由于外部力和时刻在空间机器人基础上或/ /和操纵者的最终效果。在提出的方法中,考虑了系统势头的变化,但不需要额外的控制器。在本文中,我们推导了双臂空间机器人操纵器的运动规划方程,其中外力和时刻在卫星和操纵器末端效应上起作用。所提出的方法已经通过数值模拟验证,并介绍和讨论了结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号