首页> 外文期刊>Molecular biology and evolution >Stress-Driven Transposable Element De-repression Dynamics and Virulence Evolution in a Fungal Pathogen
【24h】

Stress-Driven Transposable Element De-repression Dynamics and Virulence Evolution in a Fungal Pathogen

机译:真菌病原体中应力驱动的转置元素去抑制动态和毒力进化

获取原文
获取原文并翻译 | 示例
       

摘要

Transposable elements (TEs) are drivers of genome evolution and affect the expression landscape of the host genome. Stress is a major factor inducing TE activity; however, the regulatory mechanisms underlying de-repression are poorly understood. Plant pathogens are excellent models to dissect the impact of stress on TEs. The process of plant infection induces stress for the pathogen, and virulence factors (i.e., effectors) located in TE-rich regions become expressed. To dissect TE de-repression dynamics and contributions to virulence, we analyzed the TE expression landscape of four strains of the major wheat pathogen Zymoseptoria tritici. We experimentally exposed strains to nutrient starvation and host infection stress. Contrary to expectations, we show that the two distinct conditions induce the expression of different sets of TEs. In particular, the most highly expressed TEs, including miniature inverted-repeat transposable element and long terminal repeat-Gypsy element, show highly distinct de-repression across stress conditions. Both the genomic context of TEs and the genetic background stress (i.e., different strains harboring the same TEs) were major predictors of de-repression under stress. Gene expression profiles under stress varied significantly depending on the proximity to the closest TEs and genomic defenses against TEs were largely ineffective to prevent de-repression. Next, we analyzed the locus encoding the Avr3D1 effector. We show that the insertion and subsequent silencing of TEs in close proximity likely contributed to reduced expression and virulence on a specific wheat cultivar. The complexity of TE responsiveness to stress across genetic backgrounds and genomic locations demonstrates substantial intraspecific genetic variation to control TEs with consequences for virulence.
机译:可转换元素(TES)是基因组进化的驱动因素,并影响宿主基因组的表达景观。压力是诱导TE活动的主要因素;然而,拒绝抑制的监管机制很差。植物病原体是优异的模型,用于解剖压力对TES的影响。植物感染的过程诱导病原体的应力,并且表达了位于TE的地区的毒力因子(即效应器)。解剖到抑制动态和对毒力的贡献,我们分析了四种主要小麦病原体唑菌素麦芽素的TE表达景观。我们通过实验暴露于营养饥饿和宿主感染胁迫。与期望相反,我们表明两个明显的条件诱导了不同套的表达。特别地,最表达的TES,包括微型倒置重复转换元件和长终端重复吉普赛元素,在压力条件下表现出高度不同的降低压力。 TES的基因组背景和遗传背景应力(即含有相同TES的不同菌株)是压力下抑制的主要预测因子。压力下的基因表达曲线根据最接近TES的邻近而显着变化,并且对TES的基因组防御性很大程度上是无效的,以防止抑制抑制。接下来,我们分析了编码AVR3D1效应器的轨迹。我们表明,近距离接近的插入和随后的沉默可能导致特定小麦品种的表达和毒力降低。 TE对遗传背景和基因组位置响应对压力的复杂性证明了对控制TES的侵权性遗传变异,具有毒力的后果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号