首页> 外文期刊>Modern Physics Letters, A >Geometric momentum and angular momentum for charge-monopole system
【24h】

Geometric momentum and angular momentum for charge-monopole system

机译:电荷单极系统的几何动力和角动量

获取原文
获取原文并翻译 | 示例

摘要

For a charge-monopole pair, we have another definition of the orbital angular momentum, and the transverse part of the momentum including the vector potential turns out to be the so-called geometric momentum that is under intensive study recently. For the charge on the spherical surface with the monopole at the origin, the commutation relations between all components of both the geometric momentum and the orbital angular momentum satisfy the so(3,1) algebra. With construction of the geometrically infinitesimal displacement operator based on the geometric momentum, the so(3,1) algebra implies the Aharonov-Bohm phase shift. The related problems such as charge and flux quantization are also addressed.
机译:对于电荷单极对,我们具有轨道角动量的另一个定义,并且包括载体电位的横向部分成为最近被密集研究的所谓的几何动力。 对于在原点的单极上的球形表面上的电荷,几何动量和轨道角动量的所有组件之间的换向关系满足所以(3,1)代数。 基于几何动量的基于几何动量的几何无限位移操作员的结构,所以(3,1)代数意味着AHARONOV-BOHM相移。 还解决了电荷和磁通量化等相关问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号