【24h】

Optimal synthesis of four-bar path generator linkages using Circular Proximity Function

机译:使用圆形接近函数的四条路径发生器连杆的最佳合成

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new objective function for the optimization of path-generator four bar linkages. A four-bar linkage includes four revolute joints, two of which are connected to the coupler link. These two joints, which are known as the moving joints of the linkage, have a remarkable characteristic: both trace circular curves. Using this fact, a new methodology is presented. In this methodology, a dyad is considered which exactly traces the desired path. On the plane attached to the moving link of the dyad, an unlimited number of points can be defined. Among these points, the point which traces a circular curve is very important since this point together with the moving joint of the dyad can be considered as the two moving joints of a four-bar linkage. In order to evaluate the path generated by each point and find the point that traces a near-circular curve, the Circular Proximity Function (CPF) is implemented. Using CPF, a new objective function is introduced that has the lowest number of optimization variables. The optimization process is carried out by the method of differential evolution (DE). Three example problems were solved which resulted in the synthesis of crank-rocker four-bar linkages.
机译:本文提出了一种新的目标函数,用于优化路径发生器四个条形连杆。四条杆连杆包括四个旋转关节,其中两个连接到耦合器链路。这两个关节称为连锁的移动接头,具有显着的特征:两条迹线圆形曲线。使用这一事实,提出了一种新方法。在该方法中,考虑了一种模因,其恰好追踪所需的路径。在连接到Dyad的移动链路的平面上,可以定义无限数量的点。在这些点中,追踪圆形曲线的点非常重要,因为这一点与二元的移动接头一起可以被认为是四杆连杆的两个移动接头。为了评估每个点生成的路径并找到跟踪近圆形曲线的点,实现圆形接近函数(CPF)。使用CPF,引入了一个具有最低优化变量数量的新客观函数。优化过程是通过差分演进(DE)的方法进行的。解决了三个示例问题,导致曲柄摇杆四杆键合的合成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号