首页> 外文期刊>Microbiology >Methane formation and oxidation by prokaryotes
【24h】

Methane formation and oxidation by prokaryotes

机译:原核生物的甲烷形成和氧化

获取原文
获取原文并翻译 | 示例
           

摘要

The review deals with systematization and generalization of new information concerning the phylogenetic and functional diversity of prokaryotes involved in the methane cycle. Methane is mostly produced by methanogenic archaea, which are responsible for the terminal stage of organic matter decomposition in a number of anoxic ecotopes. Although phylogeny, physiology, and biochemistry of methanogens have been extensively studied, important discoveries were made recently. Thus, members of deep phylogenetic lineages within the Euryarchaeota phylum (Methanomassiliicoccales, "Candidatus Methanofastidiosa," "Methanonatronarchaeia") and even outside it ("Ca. Verstraetearchaeota" and "Ca. Bathyarchaeota") were reported to carry out methyl-reducing methanogenesis. Moreover, evidence was obtained on aerobic methane production by marine heterotrophic bacteria, which demethylate polysaccharide esters of methylphosphonic acid. Methanotrophic microorganisms oxidize methane both aerobically and anaerobically, decreasing significantly the release of this greenhouse gas into the atmosphere. In the presence of oxygen methane is oxidized by methanotrophic members of Alpha- and Gammaproteobacteria, as well as by Verrucomicrobia. Methanotrophic gammaproteobacteria have been recently revealed in hypoxic and even anoxic environments, where they probably oxidize methane either in a trophic consortium with oxygenic phototrophs and/or methylotrophs or using electron acceptors other than oxygen. Anaerobic methane oxidation has been known for a long time. Sulfat- and nitrate-dependent anaerobic methane oxidation carried out by the ANME archaea via reverse methanogenesis are the best studied processes. While metal-dependent anaerobic methane oxidation is considered possible, the mechanisms and agents responsible for this process have not been reliably identified. Intracellular oxygen production during nitrite-dependent anaerobic methane oxidation was shown for bacteria "Ca. Methylomirabilis oxyfe
机译:该综述涉及关于甲烷循环中涉及的原核生物的系统发育和功能多样性的新信息的系统化和概括。甲烷主要由甲状腺原煤产生,其负责多种缺氧生成中的有机物质分解的末期阶段。虽然甲烷的系统发育,生理学和生物化学已经过度研究,但最近进行了重要的发现。因此,据据报道,EuryArchaeoTa(Methanomassiliiccales,“甲烷酮甲基artaIsa”)和“甲烷酮族突变”,“甲烷酮族突变”,“甲烷酮族司令带”和“CA.SavearchaeoTa”)中的深层系统发育谱系的成员(“verltraeTearchaeota”)。此外,通过海洋杂养细菌的有氧甲烷产生获得证据,该甲基膦酸的去甲基化多糖酯。甲脂肪型微生物氧化甲烷氧化甲烷,厌氧均匀,显着降低了这种温室气体进入大气中的释放。在存在氧气的存在下,通过α-和丙曲曲曲杆菌的甲脂蛋白成员以及疣状病症氧化。最近在缺氧甚至缺氧环境中揭示了甲虫萎缩γ癌杆菌,其中它们可能氧化甲烷在具有含氧光学和/或甲基萎缩的繁殖联盟中,或者使用除氧之外的电子受体。厌氧甲烷氧化已知很长时间。通过反向甲烷的ANME古亚氨基对硫酸和硝酸依赖性的厌氧甲烷氧化是最佳的研究方法。虽然金属依赖性的厌氧甲烷氧化被认为是可能的,但是尚未可靠地识别负责该过程的机制和药剂。亚硝酸盐依赖性厌氧甲烷氧化过程中的细胞内氧气产生为细菌“Ca.甲基咪唑氧脲

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号