...
首页> 外文期刊>Materials science in semiconductor processing >Bandgap tuning of Monolayer MoS2(1-x)Se2x alloys by optimizing parameters
【24h】

Bandgap tuning of Monolayer MoS2(1-x)Se2x alloys by optimizing parameters

机译:通过优化参数来调整单层MOS2(1-X)SE2X合金的带隙调谐

获取原文
获取原文并翻译 | 示例

摘要

Among the two-dimensional (2D) materials, transition-metal dichalcogenide (TMD) monolayer alloys attract significant attention as they allow for bandgap engineering, which is highly beneficial for their applications in nanoelectronics, optoelectronics, and photonics. In this research, we present a facile and repeatable molybdenum sulphoselenide (MoS2(1-x)Se2x) monolayer growth through systematic investigation of CVD growth parameters such as gas flow rates, substrate temperature and precursor concentration (S/Se ratio). We have obtained a full control of the x values within the range of 0-1 allowing for bandgap tailoring between 1.82 eV (MoS2) and 1.56 eV (MoSe2) where the size of the grown monolayer flakes has been measured as large as 150 mu m on SiO2 (300 nm)/Si substrates. We find that S/Se ratio and the growth temperature are the most critical parameters to control the composition (x value) of the monolayer alloy TMDs. In our study, we find two growth regimes, where S rich alloys are grown by controlling S to Se ratio at 750 degrees C and Se rich alloys are synthesized at higher growth temperatures (900 degrees C) by utilizing Se rich vapor conditions. Growth of Se rich alloys at a higher growth temperature is attributed to the chalcogen exchange mechanism (CEM) referring to substitution of S atoms in as grown alloy host lattice site with Se atoms present in the Se rich vapor. CEM is proposed as the basic alloying mechanism for selenium rich monolayer alloys. Regarding the structural properties, FWHM of the photoluminescence (PL) spectral peaks of our flakes range between 19 and 37 nm together with uniform spatial PL emission intensities indicating high crystalline quality. Tuning the bandgap of high-quality and large area TMD monolayers by simply changing the basic CVD parameters is of great benefit for future 2D optoelectronic devices.
机译:在二维(2D)材料中,过渡金属二甲基化物(TMD)单层合金吸引了显着的关注,因为它们允许带隙工程,这对其在纳米电子,光电子和光子学中的应用非常有益。在该研究中,我们通过对CVD生长参数如气体流速,衬底温度和前体浓度(S / SE比率)进行了系统研究,介绍了容易和可重复的硫磺烯烃(MOS2(1-x)SE2X)单层生长。我们已经完全控制了0-1范围内的X值,允许在1.82eV(MOS2)和1.56eV(MOSE2)之间的带隙剪裁,其中生长的单层薄片的尺寸被测量为150μm在SiO2(300nm)/ si底物上。我们发现S / SE比和生长温度是控制单层合金TMDS的组成(X值)的最关键参数。在我们的研究中,我们发现两种生长制度,其中通过在750℃下通过控制S至Se比以较高的蒸汽条件在更高的生长温度(900℃)下合成富含合金的S富合金。在较高的生长温度下富含合金的生长归因于硫芥子发作的交换机制(CEM),参照SE富含蒸汽中的SE原子作为生长合金宿主格子位点中的S原子。 CEM被提出为硒富含单层合金的基本合金化机制。关于结构特性,光致发光(PL)光谱峰的光谱峰值在19至37nm之间,与均匀的空间PL发射强度,指示高晶体质量。通过简单地改变基本CVD参数,调整高质量和大面积TMD单层的带隙对于未来的2D光电器件具有很大的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号