...
首页> 外文期刊>Experimental Neurology >Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence
【24h】

Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence

机译:哺乳酰胺酰胺酰胺酰基转移酶2(NMNAT2)中的严重双射胶失异突变在两次胎儿αkinesia变形序列中的两种胎儿

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The three nicotinamide mononucleotide adenylyltransferase (NMNAT) family members synthesize the electron carrier nicotinamide adenine dinucleotide (NAD(+)) and are essential for cellular metabolism. In mammalian axons, NMNAT activity appears to be required for axon survival and is predominantly provided by NMNAT2. NMNAT2 has recently been shown to also function as a chaperone to aid in the refolding of misfolded proteins. Nmnat2 deficiency in mice, or in its ortholog dNmnat in Drosophila, results in axon outgrowth and survival defects. Peripheral nerve axons in NMNAT2-deficient mice fail to extend and innervate targets, and skeletal muscle is severely underdeveloped. In addition, removing NMNAT2 from established axons initiates axon death by Wallerian degeneration. We report here on two stillborn siblings with fetal akinesia deformation sequence (FADS), severely reduced skeletal muscle mass and hydrops fetalis. Clinical exome sequencing identified compound heterozygous NMNAT2 variant alleles in both cases. Both protein variants are incapable of supporting axon survival in mouse primary neuron cultures when overexpressed. In vitro assays demonstrate altered protein stability and/or defects in NAD(+) synthesis and chaperone functions. Thus, both patient NMNAT2 alleles are null or severely hypo-morphic. These data indicate a previously unknown role for NMNAT2 in human neurological development and provide the first direct molecular evidence to support the involvement of Wallerian degeneration in a human axonal disorder.
机译:三种烟酰胺单核苷酸腺苷酸酶(NMNAT)家族成员合成电子载体烟酰胺腺嘌呤二核苷酸(NAD(+)),对细胞代谢至关重要。在哺乳动物轴突中,轴突存活似乎似乎是NMNAT活性,主要由NMNAT2提供。最近已显示NMNAT2也用作伴侣源,以帮助重叠错误折叠的蛋白质。 NMNAT2小鼠的缺乏,或在其在果蝇中的Ortholog Dnmnat,导致轴突过多和生存缺陷。 NMNAT2缺陷小鼠的外周神经轴突未延伸和支配靶,并且骨骼肌严重趋于不发达。此外,从既定的轴突中移除NMNAT2启动了Wallerian变性的轴突死亡。我们在此报告在这里有两种尸体兄弟姐妹,胎儿αkinesia变形序列(FADS),严重降低骨骼肌质量和Hydrops fetalis。两种情况下鉴定了临床外序测序鉴定了化合物杂合NMNAT2变异等位基因。在过表达时,蛋白质变体均不能在小鼠初级神经元培养中支持轴突存活。体外测定证明了NAD(+)合成和伴侣官能团中改变的蛋白质稳定性和/或缺陷。因此,患者的NMNAT2等位基因均为零或严重的低变形。这些数据表明了NMNAT2在人类神经发育中的先前未知作用,并提供了第一个直接分子证据来支持人类轴突疾病中的Wallerian变性的参与。

著录项

  • 来源
    《Experimental Neurology》 |2019年第2019期|共12页
  • 作者单位

    Univ Cincinnati Cincinnati Childrens Hosp Med Ctr Div Human Genet Dept Pediat Cincinnati OH;

    Univ Cambridge John van Geest Ctr Brain Repair ED Adrian Bldg Forvie Site Robinson Way Cambridge;

    Univ Miami Miller Sch Med Dept Mol &

    Cellular Pharmacol Miami FL 33136 USA;

    Polytech Univ Marche Sect Biochem Dept Clin Sci DISCO Via Ranieri 67 I-60131 Ancona Italy;

    Polytech Univ Marche Sect Biochem Dept Clin Sci DISCO Via Ranieri 67 I-60131 Ancona Italy;

    Yantai Univ Collaborat Innovat Ctr Adv Drug Delivery Syst &

    B Key Lab Mol Pharmacol &

    Drug;

    Univ Cambridge John van Geest Ctr Brain Repair ED Adrian Bldg Forvie Site Robinson Way Cambridge;

    Univ Miami Miller Sch Med Dept Mol &

    Cellular Pharmacol Miami FL 33136 USA;

    Univ Cincinnati Cincinnati Childrens Hosp Med Ctr Div Human Genet Dept Pediat Cincinnati OH;

    Univ Cambridge John van Geest Ctr Brain Repair ED Adrian Bldg Forvie Site Robinson Way Cambridge;

    Univ Miami Miller Sch Med Dept Mol &

    Cellular Pharmacol Miami FL 33136 USA;

    Univ Cincinnati Cincinnati Childrens Hosp Med Ctr Div Human Genet Dept Pediat Cincinnati OH;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经病学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号