首页> 外文期刊>International Journal of Performability Engineering >Coarse-Grained Parallel AP Clustering Algorithm based on Intra-Class and Inter-Class Distance
【24h】

Coarse-Grained Parallel AP Clustering Algorithm based on Intra-Class and Inter-Class Distance

机译:基于类别和级别距离的粗粒度并行AP聚类算法

获取原文
获取原文并翻译 | 示例

摘要

Affinity Propagation (AP) clustering is an algorithm based on message passing between data points, which mainly achieves clustering through the similarity between data. Compared with traditional clustering methods, the AP clustering algorithm can implement clustering without giving a predetermined number of clusters. Therefore, it has the advantages of fast and high efficiency. However, it has certain limitations in dealing with high-dimensional complex datasets. In order to improve the efficiency and accuracy of the AP clustering algorithm, a coarse-grained parallel AP clustering algorithm based on intra-class and inter-class distances is proposed. IOCAP. Firstly, the idea of granularity is introduced to divide the initial dataset into multiple subsets. Secondly, the similarity matrix is improved by combining the intra-class and inter-class distances for each subset. Finally, the improved parallel AP clustering is implemented based on the MapReduce model. Experiments on the Iris dataset, the Diabetes dataset, and the MNIST dataset show that the IOCAP algorithm has good adaptability on large datasets and can effectively improve the accuracy of the algorithm while maintaining the AP clustering effect.
机译:关联传播(AP)聚类是一种基于数据点之间的消息的算法,其主要实现通过数据之间的相似性群集。与传统聚类方法相比,AP聚类算法可以实现群集而不给出预定数量的集群。因此,它具有快速和高效率的优点。但是,它对处理高维复杂数据集具有一定的限制。为了提高AP聚类算法的效率和准确性,提出了一种基于帧内级和跨域距离的粗粒化并行AP聚类算法。 Iocap。首先,引入粒度的想法以将初始数据集分成多个子集。其次,通过组合每个子集的类内和类间距离来改善相似性矩阵。最后,基于MapReduce模型实现改进的并行AP群集。在IRIS数据集,糖尿病数据集和MNIST DataSet上的实验表明,IoCAP算法对大型数据集具有良好的适应性,可以在保持AP聚类效果的同时有效提高算法的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号