首页> 外文期刊>International Journal of Advanced Robotic Systems >Investigation of Fish Caudal Fin Locomotion Using a Bio-inspired Robotic Model
【24h】

Investigation of Fish Caudal Fin Locomotion Using a Bio-inspired Robotic Model

机译:使用生物启发机器人模型对鱼类尾鳍运动的研究

获取原文
获取原文并翻译 | 示例
           

摘要

Due to its advantages of realizing repeatable experiments, collecting data and isolating key factors, the bio-robotic model is becoming increasingly important in the study of biomechanics. The caudal fin of fish has long been understood to be central to propulsion performance, yet its contribution to manoeuverability, especially for homocercal caudal fin, has not been studied in depth. In the research outlined in this paper, we designed and fabricated a robotic caudal fin to mimic the morphology and the three-dimensional (3D) locomotion of the tail of the Bluegill Sunfish (Lepomis macrochirus). We applied heave and pitch motions to the robot to model the movement of the caudal peduncle of its biological counterpart. Force measurements and 2D and 3D digital particle image velocimetry were then conducted under different movement patterns and flow speeds. From the force data, we found the addition of the 3D caudal fin locomotion significantly enhanced the lift force magnitude. The phase difference between the caudal fin ray and peduncle motion was a key factor in simultaneously controlling the thrust and lift. The increased flow speed had a negative impact on the generation of lift force. From the average 2D velocity field, we observed that the vortex wake directed water both axially and vertically, and formed a jet-like structure with notable wake velocity. The 3D instantaneous velocity field at 0.6 T indicated the 3D motion of the caudal fin may result in asymmetry wake flow patterns relative to the mid-sagittal plane and change the heading direction of the shedding vortexes. Based on these results, we hypothesized that live fish may actively tune the movement between the caudal fin rays and the peduncle to change the wake structure behind the tail and hence obtain different thrust and lift forces, which contributes to its high manoeuvrability.
机译:由于实现了可重复实验的优点,收集数据和隔离关键因素,生物机器人模型在生物力学的研究中变得越来越重要。尾鳍的鱼类长期以来已经被理解为推进性能的核心,但它对Sanooeusubity的贡献,特别是对于同性恋尾鳍,尚未深入研究。在本文概述的研究中,我们设计并制作了机器人尾鳍,以模仿蓝血管Sunfish(Lepomis Macrochirus)的尾巴的形态和三维(3D)机置。我们将升降和俯仰动作应用于机器人以模拟其生物对应物的尾部花梗的运动。然后在不同的运动模式和流速下进行力测量和2D和3D数字粒子图像速度。从力数据来看,我们发现添加了3D尾鳍运动显着增强了提升力幅度。尾部射线射线和花梗运动之间的相位差是同时控制推力和升力的关键因素。增加的流速对提升力产生负面影响。从平均2D速度场,我们观察到涡旋唤醒在轴向和垂直上引导,并形成具有显着唤醒速度的喷射结构。 0.6 t的3D瞬时速度场表示尾鳍的3D运动可以导致相对于中矢状的不对称唤醒流动模式,并改变脱落涡流的标题方向。基于这些结果,我们假设活鱼可以积极地调整尾鳍光线和花序梗之间的运动,以改变尾部后面的尾部结构,因此获得不同的推力和提升力,这有助于其具有高机动性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号