首页> 外文会议>IEEE International Conference on Robotics and Biomimetics >Quantitative hydrodynamic investigation of fish caudal fin cupping motion using a bio-robotic model
【24h】

Quantitative hydrodynamic investigation of fish caudal fin cupping motion using a bio-robotic model

机译:基于生物机器人模型的鱼尾鳍拔罐运动定量水动力研究

获取原文

摘要

The three-dimensional deformation of fish caudal fin during swimming was reported in several teleost bony fish species, e.g., bluegill sunfish (Lepomis macrochirus) and cichlid fish (Pseudotropheus greshakei). However, few study has addressed the effect of 3D locomotion on its thrust efficiency quantitatively. In this paper, we first performed biological observations on yellow perch (Perca flavescens) and confirmed the evidence of “cupping” motion for the steady swimming behaviors. The biological kinematics data was then extracted and appropriately programmed into to a robotic caudal fin model coupled with heave and pitch oscillatory motions. We then conducted systematic hydrodynamic experiments on this physical model by manipulating Strouhal numbers (St=0.16-0.50). Comparison between the cupping fin motion and the flat motion showed that the thrust force increased by 78% at the St of 0.32, and thrust efficiency increased 16% at the St of 0.28. DPIV experiments in the horizontal plane were conducted at representative experimental scenarios (St=0.22 and 0.5). We found that the cupping motion has a significant effect on the wake structure, which was distinct with the typically found wake structure, for example, reversed Karman vortex reported by many two-dimensional flapping foil studies. Quantitative analysis of wake flow further demonstrated that the caudal fin generated stronger vortex circulation with addition of cupping motion. We hypothesize that the fish may control the cupping motion to obtain better swimming efficiency under different swimming states.
机译:游泳中鱼尾鳍的三维变形在几种硬骨鱼中得到了报道,例如,blue鱼(Lepomis macrochirus)和丽鱼(Pseudotropheus greshakei)。但是,很少有研究定量地研究3D运动对其推力效率的影响。在本文中,我们首先对黄鲈(Perca flavescens)进行了生物学观察,并确认了稳定游泳行为“杯状”运动的证据。然后提取生物运动学数据,并将其适当编程为机器人的尾鳍模型,并结合起伏和俯仰振荡运动。然后,我们通过操纵Strouhal数(St = 0.16-0.50),对该物理模型进行了系统的水动力实验。杯状翅片运动和平面运动之间的比较表明,在St为0.32时,推力增加了78%,在St为0.28时,推力效率提高了16%。在有代表性的实验场景下(St = 0.22和0.5)在水平面上进行了DPIV实验。我们发现拔罐运动对尾流结构有重大影响,这与通常发现的尾流结构是不同的,例如,许多二维拍打箔片研究报告的反向卡尔曼涡旋。尾流的定量分析进一步表明,尾鳍与杯形运动相结合会产生更强的涡旋循环。我们假设鱼可以控制拔罐运动以获得不同游泳状态下更好的游泳效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号