...
首页> 外文期刊>Inorganic Chemistry Frontiers >Silver vanadium oxide@water-pillared vanadium oxide coaxial nanocables for superior zinc ion storage properties
【24h】

Silver vanadium oxide@water-pillared vanadium oxide coaxial nanocables for superior zinc ion storage properties

机译:银钒氧化物@水柱钒氧化物同轴纳米可用于优质锌离子储存性能

获取原文
获取原文并翻译 | 示例

摘要

Effective ionic/electronic percolation, especially in a thick electrode, has a decisive influence on the electrochemical properties of rechargeable batteries, such as material usefulness, electrode reversibility and cell lifespan. Using low cost and highly safe rechargeable aqueous zinc ion batteries (RAZBs) as a model, in this paper a dense electrode architecture is presented which is constructed using silver vanadium oxide@water-pillared vanadium oxide core-shell (Ag0.333V2O5@V2O5 center dot nH(2)O) coaxial nanocables that maintain optimal ion/electron percolation without admixing the additional inert component. This electrochemically robust architecture is composed of a highly electronic conductive phase of silver vanadate and a highly ionic conductive phase of the water-pillared V2O5 center dot nH(2)O structure, which synergistically forms a coaxial nanocable structure benefiting ion/electron contact and penetration in a thick electrode. As expected, the Ag0.333V2O5@V2O5 center dot nH(2)O coaxial nanocables deliver a high reversible capacity (312.1 mA h g(-1) at 0.5 A g(-1)), excellent rate capability (196.7 mA h g(-1) at 3.0 A g(-1)) and stable cycling performance (261.7 mA h g(-1) at 0.5 A g(-1) after 100 cycles). The investigation of the electrochemical reaction kinetics reveals a combinatorial fast pseudocapacitive reaction and a diffusion controlled intercalation reaction. The lower percolation threshold of both ions and electrons should be responsible for the better electrode kinetics and the improved zinc ion storage capacity of the Ag0.333V2O5@V2O5 center dot nH(2)O coaxial nanocables compared to that of pristine Ag0.333V2O5 electrodes. It is anticipated that the as-proposed strategy of constructing effective ionic/electronic percolating thick electrodes to boost the reaction kinetics can be applied to other active materials for constructing practical multivalent batteries.
机译:有效的离子/电子渗透,特别是在厚电极中,对可充电电池的电化学性质具有决定性的影响,例如材料有用性,电极可逆性和细胞寿命。使用低成本和高安全的可充电水锌离子电池(Razbs)作为型号,本文提出了一种致密电极架构,其使用银钒氧化物氧化物氧化物芯 - 壳(Ag0.333V2O5汇编氧化银氧化物氧化物氧化物核心 - 壳(Ag0.333V2O5汇编)点NH(2)o)同轴纳米可用于保持最佳离子/电子渗流的情况而不混合额外的惰性组分。这种电化学稳健的架构由银钒酸盐的高度电子导电阶段和水柱V2O5中心点NH(2)O结构的高度离子导电相组成,该结构协同形成了同轴纳米可接受的结构受益离子/电子接触和穿透在厚电极中。正如预期的那样,AG0.333V2O5汇编纳米纳米型同轴纳米皮带提供高可逆容量(312.1 mA Hg(-1),0.5 Ag(-1)),优异的速率能力(196.7 mA Hg( - 1)在100次循环后,在3.0Ag(-1))和稳定的循环性能(261.7 mA Hg(-1)下)。电化学反应动力学的研究揭示了组合快速伪消耗反应和扩散控制嵌入反应。与原始Ag0.333V2O5电极相比,两个离子和电子的较低电极动力学和改进的锌离子储存容量应该负责Ag0.333V2O5 @ v205中心点NH(2)o同轴纳米型的负责。预计可以将有效离子/电子渗透厚电极构建有效的离子/电子渗透致反应动力学的策略可以应用于用于构建实际多价电池的其他活性材料。

著录项

  • 来源
    《Inorganic Chemistry Frontiers 》 |2019年第9期| 共10页
  • 作者单位

    Qingdao Univ Sci &

    Technol Coll Mat Sci &

    Engn Qingdao 266042 Shandong Peoples R China;

    Qingdao Univ Sci &

    Technol Coll Electromech Engn Qingdao 266042 Shandong Peoples R China;

    Qingdao Univ Sci &

    Technol Coll Mat Sci &

    Engn Qingdao 266042 Shandong Peoples R China;

    Qingdao Univ Sci &

    Technol Coll Mat Sci &

    Engn Qingdao 266042 Shandong Peoples R China;

    Qingdao Univ Sci &

    Technol Coll Mat Sci &

    Engn Qingdao 266042 Shandong Peoples R China;

    Qingdao Univ Sci &

    Technol Coll Mat Sci &

    Engn Qingdao 266042 Shandong Peoples R China;

    Qingdao Univ Sci &

    Technol Coll Mat Sci &

    Engn Qingdao 266042 Shandong Peoples R China;

    Qingdao Univ Sci &

    Technol Coll Mat Sci &

    Engn Qingdao 266042 Shandong Peoples R China;

    Qingdao Univ Sci &

    Technol Coll Mat Sci &

    Engn Qingdao 266042 Shandong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号