首页> 外文学位 >Dielectric and conducting properties of the spinel structures Iron Vanadium Oxide, Manganese Vanadium Oxide and Cobalt Vanadium Oxide in high magnetic field and under very high pressure.
【24h】

Dielectric and conducting properties of the spinel structures Iron Vanadium Oxide, Manganese Vanadium Oxide and Cobalt Vanadium Oxide in high magnetic field and under very high pressure.

机译:尖晶石结构的氧化铁钒氧化物,锰钒氧化物和钴钒氧化物在高磁场和非常高的压力下的介电和导电性能。

获取原文
获取原文并翻译 | 示例

摘要

I observed the changes of the crystal structure in single crystal FeV 2O4 by measuring the capacitance and dissipation under high magnetic field. I discovered that there was a significant amount of heat released at low temperature as the magnetic moment changes its orientation. This effect was observed from a sharp peak in the temperature, the capacitance and the dissipation versus magnetic field data at the field where the magnetic moment changes its orientation. This was not observed in the previous measurements on polycrystal FeV2O4 done by Takei, et al. [5] and in the field dependence of capacitance of the other spinels, MnV2O4 and CoV2O 4. Moreover, from the magnetization and capacitance measurements on single crystal FeV2O4, a small plateau at low temperature was observed in the vicinity of 0 Tesla. This is the evidence that there are two magnetic moments exist in single crystal FeV2O4.;In single crystal MnV2O4, I also observed the changes of the crystal structure and the magnetic ordering. I applied the magnetic field at different temperatures and measured the capacitance and dissipation of single crystal MnV2O4. From the field dependence of the capacitance and dissipation of single crystal MnV2O 4, I confirmed that there is a structural transition at 52 K and a magnetic ordering at 56 K. However, at low temperature, the field dependence of the capacitance of single crystal MnV2O4 behaves differently compared to FeV2O4. This is most likely due to the ratio between lattice constant c in tetragonal phase and lattice constant a in cubic phase, ctac . For single crystal FeV2O4, ctac > 1, but ctac 1 for single crystal MnV2O4.;The third one, single crystal CoV2O4, is the most conducting among three spinels and I could not measure the capacitance from room temperature down to 30 K. However, below 30 K this crystal becomes more insulating and I could measure its capacitance. As I swept the field below 10 K, the field dependence of the dielectric constant showed a time dependent behavior. Moreover, I observed a dipole like behavior in single crystal CoV 2O4 although it was not very pronounced.;Another good tool to probe the electrical properties of spinels is the resistivity measurement under very high pressure. I did resistivity measurements on single crystals CoV2O4 and FeV2O 4 under very high pressure up to 8 GPa using cubic anvil system in ISSP. In general, the resistivity of these compounds decreased with increasing pressure. I could not observe the magnetic ordering of FeV2O4 under ambient pressure because it was very insulating. The magnetic ordering could be observed above 2 GPa and the magnetic ordering temperature increased linearly with increasing pressure. The effect was similar with CoV2O 4. More interestingly, CoV2O4 showed a metallic behavior and a metal to insulator transition under high pressure. This is a new observation in this type of material. The interesting aspect of spinel vanadate is that the system approaches the itinerant electron limit with decreasing distance between vanadium ions[8,9]. J.B Goodenough predicted a critical distance between vanadium ions in the spinel vanadate system, 2.94 A[10]. If the distance between vanadium ions (V-V distance) is smaller than this critical distance, the system becomes metallic. The V-V distance of single crystal CoV2O4 is close to this critical value. The resistivity data of single crystal CoV2O4 under very high pressure confirmed that CoV2O4 is sitting at the boundary between the insulator and the metal regime. Finally, Variable Range Hopping (VRH) model and Arrhenius model were used to fit the resistivity data of single crystals FeV2O4 and CoV2O 4. I found that the energy barrier parameter T0 and the activation energy Ea decreased with increasing pressure. (Abstract shortened by UMI.)
机译:通过测量强磁场下的电容和耗散,我观察了单晶FeV 2O4中晶体结构的变化。我发现,随着磁矩改变方向,低温下会释放出大量热量。从磁矩改变其方向的磁场的温度,电容和耗散与磁场数据的急剧峰值观察到了这种影响。 Takei等人在先前对多晶FeV2O4的测量中未观察到这一点。 [5]以及其他尖晶石MnV2O4和CoV2O 4的电容的场依存性。此外,从对单晶FeV2O4的磁化和电容测量,在0特斯拉附近观察到低温时的小平台。这证明单晶FeV2O4中存在两个磁矩。在单晶MnV2O4中,我还观察到了晶体结构和磁序的变化。我在不同温度下施加磁场,并测量了单晶MnV2O4的电容和耗散。从单晶MnV2O4的电容和耗散的场相关性,我证实在52 K处存在结构转变,而在56 K处存在磁序。但是,在低温下,单晶MnV2O4的电容场相关性与FeV2O4相比,其行为有所不同。这很可能是由于四方相中的晶格常数c与立方相中的晶格常数ctac之比。对于单晶FeV2O4,ctac> 1,但对于单晶MnV2O4,ctac <1。;第三个,单晶CoV2O4,在三个尖晶石中导电性最高,我无法测量从室温到30 K的电容。低于30 K时,该晶体变得更加绝缘,我可以测量其电容。当我将场扫描到10 K以下时,介电常数的场依赖性显示出时间依赖性。此外,我观察到单晶CoV 2O4中偶极子的行为,尽管不是很明显。;探测尖晶石电性能的另一个很好的工具是在非常高的压力下测量电阻率。我在ISSP中使用立方砧系统在高达8 GPa的极高压力下对单晶CoV2O4和FeV2O 4进行了电阻率测量。通常,这些化合物的电阻率随压力增加而降低。我无法观察到在常压下FeV2O4的磁性排序,因为它非常绝缘。可以在2 GPa以上观察到磁排序,并且磁排序温度随压力的增加而线性增加。其作用与CoV2O 4相似。更有趣的是,CoV2O4在高压下表现出金属行为,并且金属向绝缘体过渡。这是这种材料的新发现。钒酸尖晶石的有趣之处在于,随着钒离子之间距离的减小,系统达到了流动电子极限[8,9]。 J.B Goodenough预测尖晶石钒酸盐体系中钒离子之间的临界距离为2.94 A [10]。如果钒离子之间的距离(V-V距离)小于此临界距离,则系统将变成金属。单晶CoV2O4的V-V距离接近此临界值。单晶CoV2O4在非常高的压力下的电阻率数据证实,CoV2O4位于绝缘体和金属状态之间的边界。最后,使用可变跳频(VRH)模型和Arrhenius模型拟合FeV2O4和CoV2O4单晶的电阻率数据。我发现,随着压力的增加,能垒参数T0和活化能Ea减小。 (摘要由UMI缩短。)

著录项

  • 作者

    Kismarahardja, Ade Wijaya.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Chemistry Inorganic.;Physics Solid State.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号