首页> 外文期刊>Industrial Crops and Products >Fermentation of oat and soybean hull hydrolysates into ethanol and xylitol by recombinant industrial strains of Saccharomyces cerevisiae under diverse oxygen environments
【24h】

Fermentation of oat and soybean hull hydrolysates into ethanol and xylitol by recombinant industrial strains of Saccharomyces cerevisiae under diverse oxygen environments

机译:在各种氧环境下通过复合酿酒酵母的重组产业菌株将OAT和大豆壳体将乙醇和木糖醇中的发酵成葡萄糖和木糖醇

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, we evaluated the capacity of recombinant industrial Saccharomyces cerevisiae YRH 396 and YRH 400 strains to ferment sugars from oat hull and soybean hull hydrolysates into ethanol and xylitol. The strains were genetically modified by chromosomal integration of Pichia stipitis XYL1/XYL2 genes and the overexpression of S. cerevisiae XKS1 genes, in order to have the ability to metabolize xylose, one of the main sugars in lignocellulosic biomass. The strains YRH 396 and YRH 400 were tested by fermenting acid and enzymatic hydrolysates of oat and soybean hull, with different concentrations of sugars, in orbital shaker under conditions of anaerobiosis and oxygen limitation. The YRH 396 strain showed the best kinetic parameters for the production of ethanol and xylitol, thus its metabolism was further studied in bioreactor cultivations. Under anaerobiosis, the maximum consumption of xylose was approximately 35% when using hydrolysates containing similar concentrations of glucose and xylose, whereas when hydrolysates mainly composed of xylose were used, this strain showed a consumption of 73% of the xylose, reaching yields of ethanol of 0.33 g g(-1). In bioreactor cultivations under oxygen limitation, xylose consumption reached approximately 65%, and the main product was xylitol, reaching a final concentration of 8.17 g L-1. These results suggest that, in addition to an adaptive evolution process, molecular modifications are necessary for an industrial application of these type of genetically modified strains.
机译:在这项研究中,我们评估了重组产业酿酒酵母YRH 396和YRH 400菌株的能力,从燕麦壳和大豆壳体水解产物中的乙醇和木糖醇发酵糖。菌株通过染色体整合Pichia智菌炎Xyl1 / Xyl2基因和S.CerevisiaeXKS1基因的过表达,以便能够将木糖组成的能力,其中木质纤维素生物质中的一份主要糖。在厌氧和氧气限制条件下,通过燕麦和大豆壳体的发酵酸和酶的糖和大豆壳体的发酵酸和酶水解酸盐进行测试,在轨道振荡器中进行不同浓度的糖。 YRH 396菌株显示出用于生产乙醇和木糖醇的最佳动力学参数,因此在生物反应器培养中进一步研究其代谢。在厌氧病下,当使用含有类似浓度的葡萄糖和木糖的水解产物时,木糖的最大消耗约为35%,而当使用主要由木糖组成的水解产物时,该菌株的消耗量为73%的木糖,达到乙醇的产量0.33 gg(-1)。在氧气限制下的生物反应器培养中,木糖消耗达到约65%,主要产物是木糖醇,达到8.17g L-1的终浓度。这些结果表明,除了自适应演化过程之外,还需要进行这些类型的遗传修饰菌株的工业应用所必需的分子修改。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号