首页> 外文期刊>AIChE Journal >Integration of modern computational chemistry andASPEN PLUSfor chemical process design
【24h】

Integration of modern computational chemistry andASPEN PLUSfor chemical process design

机译:整合现代计算化学和Aspen Plus进行化学工艺设计

获取原文
获取原文并翻译 | 示例
           

摘要

Thermodynamic properties and fluid phase equilibria are crucial for the design and development of a chemical process. However, such data may not always be available, particularly for fine or specialty chemicals. In this work, we evaluate the reliability of using modern computational chemistry combined with recently developed predictive thermodynamic models to provide all the thermodynamic properties required in process design with ASPEN PLUS. Specifically, the G3 method is used for the ideal gas heat capacities and properties of formation, and the PR+COSMOSAC equation of state and COSMO-SAC activity coefficient model are utilized for the properties and phase behaviors of pure and mixture fluids. These methods are chosen because they do not require any species-dependent parameters and can, in principle, be applied to any chemical species. For a set of 972 chemicals, it is found that most properties can be predicted with a satisfactory accuracy (less than 10%: critical temperature [5%], critical pressure [10%], critical volume [5%], constant pressure ideal gas heat capacity [5%], and heat of vaporization [10%], except for the acentric factor [33%] and vapor pressure [73%]). Furthermore, the predicted results show little bias suggesting that these theoretically based methods are reliable for new chemicals for which experimental data are not yet available. Our analyses show that better accuracy in the prediction of vapor pressure and formation enthalpy and free energy is necessary for the design of chemical processes without relying on any experimental input. Nonetheless, these methods often provide reliable relative property values (e.g., relative value of normal boiling temperature can be predicted with 94% accuracy), making it possible to screen for new chemicals for improving existing processes.
机译:热力学性质和流体相平纤维化对于化学过程的设计和开发至关重要。然而,这种数据可能并不总是可用,特别是对于精细或特种化学品。在这项工作中,我们评估了使用现代计算化学结合最近开发的预测热力学模型的可靠性,以提供与Aspen Plus的过程设计所需的所有热力学特性。具体地,G3方法用于理想的气体热容和形成性能,并且存在状态和宇宙囊活性系数模型的PR + Cosmosac方程用于纯和混合液的性质和相位行为。选择这些方法是因为它们不需要任何依赖性参数,并且原则上可以应用于任何化学物质。对于一组972种化学品,发现大多数属性可以预测令人满意的精度(小于10%:临界温度[5%],临界压力[10%],临界体积[5%],恒压理想气体热容量[5%],以及蒸发热[10%],除锐焦因子外[33%]和蒸气压[73%])。此外,预测结果表明很少的偏差,表明这些理论上的方法对于新化学品尚未使用的新化学品是可靠的。我们的分析表明,在不依赖于任何实验输入的情况下,需要更好地对蒸气压和形成焓和自由能的预测的准确性。尽管如此,这些方法通常提供可靠的相对特性值(例如,可以以94%的精度预测正常沸腾温度的相对值),使得可以筛选用于改善现有过程的新化学品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号