首页> 外文期刊>ACM transactions on algorithms >Faster Approximation Schemes for the Two-Dimensional Knapsack Problem
【24h】

Faster Approximation Schemes for the Two-Dimensional Knapsack Problem

机译:用于二维背包问题的更快近似方案

获取原文
获取原文并翻译 | 示例

摘要

For geometric optimization problems we often understand the computational complexity on a rough scale, but not very well on a finer scale. One example is the two-dimensional knapsack problem for squares. There is a polynomial time (1 + epsilon)-approximation algorithm for it (i.e., a PTAS) but the running time of this algorithm is triple exponential in 1/epsilon, i.e., Omega(n(221/epsilon)). A double or triple exponential dependence on 1/epsilon is inherent in how this and other algorithms for other geometric problems work. In this article, we present an efficient PTAS (EPTAS) for knapsack for squares, i.e., a (1 + epsilon)-approximation algorithm with a running time of O-epsilon(1) . n(O(1)). In particular, the exponent of n in the running time does not depend on e at all! Since there can be no fully polynomial time approximation scheme (FPTAS) for the problem (unless P = NP), this is the best kind of approximation scheme we can hope for. To achieve this improvement, we introduce two new key ideas: We present a fast method to guess the Omega(2(2)(1/)(epsilon)) relatively large squares of a suitable near-optimal packing instead of using brute-force enumeration. Secondly, we introduce an indirect guessing framework to define sizes of cells for the remaining squares. In the previous PTAS, each of these steps needs a running time of Omega(n(221/epsilon)) and we improve both to O-epsilon(1) . n(O(1)).
机译:对于几何优化问题,我们经常了解粗略规模的计算复杂性,但在更精细的规模上不是很好。一个例子是正方形的二维背包问题。存在多项式时间(1 + epsilon) - 其千次估计算法(即PTA),但是该算法的运行时间是1 / epsilon,即Omega(n(221 / epsilon))中的三重指数。对1 / epsilon的双指数依赖是本质和其他几何问题工作的算法的固有。在本文中,我们为方块提供了一种高效的PTA(EPTAS),即用于o-epsilon的运行时间(1)的(1 + epsilon) - 批量估计算法。 n(o(1))。特别是,在运行时间中的n的指数根本不依赖于e!由于没有完全多项式时间近似方案(FPTA)来解决问题(除非P = NP),这是我们可以希望的最佳近似方案。为了实现这一改进,我们介绍了两个新的关键思想:我们提出了一种快速方法来猜测ω(2(2)(1 /)(epsilon))相对较大的近最佳填料的平方,而不是使用蛮力枚举。其次,我们介绍一个间接猜测框架来定义剩余方块的细胞大小。在先前的PTA中,这些步骤中的每一个都需要ω的运行时间(n(221 / epsilon)),我们改善O-Epsilon(1)。 n(o(1))。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号