...
首页> 外文期刊>Computational optimization and applications >Fast bundle-level methods for unconstrained and ball-constrained convex optimization
【24h】

Fast bundle-level methods for unconstrained and ball-constrained convex optimization

机译:快速捆绑级方法,用于无约束和球受约束凸优化

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we study a special class of first-order methods, namely bundle-level (BL) type methods, which can utilize historical first-order information through cutting plane models to accelerate the solutions in practice. Recently, it has been shown in Lan (149(1-2):1-45, 2015) that an accelerated prox-level (APL) method and its variant, the uniform smoothing level (USL) method, have optimal iteration complexity for solving black-box and structured convex programming (CP) problems without requiring input of any smoothness information. However, these algorithms require the assumption on the boundedness of the feasible set and their efficiency relies on the solutions of two involved subproblems. Some other variants of BL methods which could handle unbounded feasible set have no iteration complexity provided. In this work we develop the fast APL (FAPL) method and fast USL (FUSL) method that can significantly improve the practical performance of the APL and USL methods in terms of both computational time and solution quality. Both FAPL and FUSL enjoy the same optimal iteration complexity as APL and USL, while the number of subproblems in each iteration is reduced from two to one, and an exact method is presented to solve the only subproblem in these algorithms. Furthermore, we introduce a generic algorithmic framework to solve unconstrained CP problems through solutions to a series of ball-constrained CP problems that also exhibits optimal iteration complexity. Our numerical results on solving some large-scale least squares problems and total variation based image reconstructions have shown advantages of these new BL type methods over APL, USL, and some other first-order methods.
机译:在本文中,我们研究了一类特殊的一阶级方法,即捆绑级(BL)类型方法,可以通过切割平面模型利用历史一阶信息来加速解决方案。最近,它已在LAN(149(1-2):1-45,2015)中显示,加速的Prox级(APL)方法及其变体,均匀的平滑电平(USL)方法,具有最佳的迭代复杂性解决黑盒和结构化凸编程(CP)问题而不需要输入任何平滑性信息。然而,这些算法需要对可行集合的界限进行假设,并且它们的效率依赖于两个涉及的子问题的解决方案。可以处理无界可行集合的BL方法的其他一些变体没有提供迭代复杂性。在这项工作中,我们开发了快速APL(FAPL)方法和快速USL(FUSL)方法,可以在计算时间和解决方案质量方面显着提高APL和USL方法的实际性能。 FAPL和FUSL都享有与APL和USL相同的最佳迭代复杂性,而每次迭代中的子问题的数量从两到一个减少,并且呈现精确的方法以解决这些算法中的唯一的子问题。此外,我们介绍了一系列通用算法框架,通过解决方案解决了不受约束的CP问题,通过解决方案展示了一系列的球受限CP问题,这些CP问题也表现出最佳迭代复杂性。我们在解决一些大规模最小二乘问题和总变化的基于图像重建的数值结果表明了通过APL,USL和一些其他一阶方法的这些新的BL型方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号