首页> 外文期刊>Computers and Electronics in Agriculture >Combination of computer vision and backscattering imaging for predicting the moisture content and colour changes of sweet potato (Ipomoea batatas L.) during drying
【24h】

Combination of computer vision and backscattering imaging for predicting the moisture content and colour changes of sweet potato (Ipomoea batatas L.) during drying

机译:计算机视觉和反向散射成像的组合,以预测甘薯(Ipomoea Batatas L.)在干燥过程中的含水量和颜色变化

获取原文
获取原文并翻译 | 示例

摘要

This study seeks to investigate the potential of using combined computer vision (CV) and laser-induced backscattering imaging (LLBI) in monitoring the quality attributes of sweet potato during drying. CV and backscattered images of 4 mm thickness sweet potato slices were captured after every one-hour of drying, at drying temperatures of 50-70 degrees C. Reference quality properties, such as moisture content, L*, a* and b* colour coordinates were measured hourly under the same drying conditions. Principal component analysis (PCA) and partial least square regression (PLS) were applied to the extracted combined CV (based on RGB) and backscattering imaging parameters to analyse the quality changes of sweet potato during drying. The results showed that there was significant effect of drying temperature and time on combined CV and backscattering imaging parameters. The combined optical method showed good correlation with moisture content and colour properties i.e L* and a* of sweet potato with R-2 & 0.7. Specifically, the redness (a*) gave the highest coefficient of determination (R-2) of 0.80, while the moisture ratio (MR) showed the lowest root mean square error of validation (RMSEV) with the value of 0.18. Thus, this study has shown that combined CV and backscattering imaging parameters can serve as a non-destructive tool for detecting the changes in quality parameters of sweet potato during drying.
机译:本研究旨在研究使用组合计算机视觉(CV)和激光诱导的反向散射成像(LLBI)在干燥过程中监测甘薯的质量属性。每次1小时干燥后捕获4毫米厚度的甘薯切片的CV和背散射图像,在50-70℃的干燥温度下捕获。参考品质性质,如水分含量,L *,A *和B *颜色坐标在相同的干燥条件下每小时测量。主要成分分析(PCA)和部分最小二乘回归(PLS)应用于提取的CV(基于RGB)和反向散射成像参数,以分析干燥过程中甘薯的质量变化。结果表明,干燥温度和时间组合CV和反向散射成像参数存在显着影响。结合的光学方法显示出与水分含量和颜色特性的良好相关性,即用R-2&amp的甘薯和A *。GT; GT; 0.7。具体地,发红(a *)给出了0.80的最高判定系数(R-2),而水分比(MR)显示了验证(Rmsev)的最低根均方误差(Rmsev),值为0.18。因此,该研究表明,组合的CV和反向散射成像参数可以作为非破坏性工具,用于检测干燥过程中甘薯的质量参数变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号