首页> 外文期刊>Biomechanics and modeling in mechanobiology >Mechanochemical modeling of neutrophil migration based on four signaling layers, integrin dynamics, and substrate stiffness
【24h】

Mechanochemical modeling of neutrophil migration based on four signaling layers, integrin dynamics, and substrate stiffness

机译:基于四个信令层,整合素动力学和衬底刚度的中性粒细胞迁移的机械化学建模

获取原文
获取原文并翻译 | 示例
       

摘要

Directional neutrophil migration during human immune responses is a highly coordinated process regulated by both biochemical and biomechanical environments. In this paper, we developed an integrative mathematical model of neutrophil migration using a lattice Boltzmann-particle method built in-house to solve the moving boundary problem with spatiotemporal regulation of biochemical components. The mechanical features of the cell cortex are modeled by a series of spring-connected nodes representing discrete cell-substrate adhesive sites. The intracellular signaling cascades responsible for cytoskeletal remodeling [e.g., small GTPases, phosphoinositide-3-kinase (PI3K), and phosphatase and tensin homolog] are built based on our previous four-layered signaling model centered on the bidirectional molecular transport mechanism and implemented as reaction-diffusion equations. Focal adhesion dynamics are determined by force-dependent integrin-ligand binding kinetics and integrin recycling and are thus integrated with cell motion. Using numerical simulations, the model reproduces the major features of cell migration in response to uniform and gradient biochemical stimuli based on the quantitative spatiotemporal regulation of signaling molecules, which agree with experimental observations. The existence of multiple types of integrins with different binding kinetics could act as an adaptation mechanism for substrate stiffness. Moreover, cells can perform reversal, U-turn, or lock-on behaviors depending on the steepness of the reversal biochemical signals received. Finally, this model is also applied to predict the responses of mutants in which PTEN is overexpressed or disrupted.
机译:人类免疫反应期间的定向中性粒细胞迁移是通过生物化学和生物力学环境调节的高度协调的过程。在本文中,我们使用内部内部内部的格子玻璃玻璃粒子方法开发了中性粒细胞迁移的一体化数学模型,以解决生物化学成分的时空调节的移动边界问题。细胞皮质的机械特征由表示离散的细胞基板粘合剂位点的一系列弹簧连接的节点进行建模。负责细胞骨骼重塑的细胞内信号级联[例如,小GTP酶,磷酸膦酸碱基-3-激酶(PI3K)和磷酸酶和磷酸酶和磷酸酶和磷酸酶和磷酸酶]是基于我们之前的四层信号传导模型,该模型以双向分子输送机构为中心,并实施为反应扩散方程。通过依赖于力的整联蛋白 - 配体结合动力学和整合素再循环测定局灶性粘附动力学,因此与细胞运动集成。使用数值模拟,该模型在响应于信号传导分子的定量时滞调节的基础上致致均匀和梯度生化刺激来再现细胞迁移的主要特征,这与实验观察一致。具有不同结合动力学的多种类型的整体素的存在可以充当基板刚度的适应机制。此外,细胞可以根据所接收的反转生物化学信号的陡度来执行逆转,U形或锁定行为。最后,该模型也应用于预测PTEN过度表达或破坏的突变体的响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号