...
首页> 外文期刊>Biochimica et biophysica acta. Molecular basis of disease: BBA >Microglial overexpression of fALS-linked mutant SOD1 induces SOD1 processing impairment, activation and neurotoxicity and is counteracted by the autophagy inducer trehalose
【24h】

Microglial overexpression of fALS-linked mutant SOD1 induces SOD1 processing impairment, activation and neurotoxicity and is counteracted by the autophagy inducer trehalose

机译:用于突变的突变体SOD1的小胶质过滤诱导SOD1加工损伤,激活和神经毒性,并被自噬诱导剂海藻糖抵消

获取原文
获取原文并翻译 | 示例

摘要

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. Mutations in the gene encoding copper/zinc superoxide dismutase-1 (SOD1) are responsible for most familiar cases, but the role of mutant SOD1 protein dysfunction in non-cell autonomous neurodegeneration, especially in relation to microglial activation, is still unclear. Here, we focused our study on microglial cells, which release SOD1 also through exosomes. We observed that in rat primary microglia the overexpression of the most-common SOD1 mutations linked to fALS (G93A and A4V) leads to SOD1 intracellular accumulation, which correlates to autophagy dysfunction and microglial activation. In primary contact co-cultures, fALS mutant SOD1 overexpression by microglial cells appears to be neurotoxic by itself. Treatment with the autophagy-inducer trehalose reduced mutant SOD1 accumulation in microglial cells, decreased microglial activation and abrogated neurotoxicity in the co-culture model. These data suggest that i) the alteration of the autophagic pathway due to mutant SOD1 overexpression is involved in microglial activation and neurotoxicity; ii) the induction of autophagy with trehalose reduces microglial SOD1 accumulation through proteasome degradation and activation, leading to neuroprotection. Our results provide a novel contribution towards better understanding key cellular mechanisms in non-cell autonomous ALS neurodegeneration.
机译:肌营养的外侧硬化剂(ALS)是一种致命的运动神经元疾病。编码铜/锌超氧化物歧化酶-1(SOD1)的基因突变对最熟悉的病例负责,但突变体SOD1蛋白功能障碍在非细胞自主神经变性中的作用,特别是关于微胶质激活,尚不清楚。在这里,我们将我们的研究重点研究了微胶质细胞,其通过外来释放SOD1。我们观察到,在大鼠初级微胶质细胞中,与FAL(G93A和A4V)连接的最常见的SOD1突变的过度表达导致SOD1细胞内积聚,其与自噬功能障碍和微胶质激活相关。在初级接触共培养物中,通过微胶质细胞的FAL突变体SOD1过表达似乎本身是神经毒性的。用自噬 - 诱导剂的治疗海藻糖减少突变体SOD1在微胶质细胞中的积累,在共培养模型中降低了显微胶质激活和废除神经毒性。这些数据表明i)由于突变体SOD1过表达引起的自噬途径的改变参与了微胶质激活和神经毒性; II)通过蛋白酶体降解和活化的诱导与海藻糖的自噬减少了微胶质SOD1积累,导致神经保护作用。我们的结果为更好地理解非细胞自主ALS神经变性的关键细胞机制提供了一种新的贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号