首页> 外文期刊>Acta Crystallographica, Section B. Structural Science >Topological properties of hydrogen bonds and covalent bonds from charge densities obtained by the maximum entropy method (MEM)
【24h】

Topological properties of hydrogen bonds and covalent bonds from charge densities obtained by the maximum entropy method (MEM)

机译:通过最大熵方法(MEM)获得的电荷密度得出的氢键和共价键的拓扑特性

获取原文
获取原文并翻译 | 示例
       

摘要

Charge densities have been determined by the MaximumEntropy Method (MEM) from the high-resolution, lowtemperature (T ’ 20 K) X-ray diffraction data of six different crystals of amino acids and peptides. A comparison of dynamic deformation densities of the MEM with static and dynamic deformation densities of multipole models shows that the MEM may lead to a better description of the electron density in hydrogen bonds in cases where the multipole model has been restricted to isotropic displacement parameters and loworder multipoles (lmax = 1) for the H atoms. Topological properties at bond critical points (BCPs) are found to depend systematically on the bond length, but with different functions for covalent C—C, C—N and C—O bonds, and for hydrogen bonds together with covalent C—H and N—H bonds. Similar dependencies are known for AIM properties derived from static multipole densities. The ratio of potential and kinetic energy densities |V(BCP)|/G(BCP) is successfully used for a classification of hydrogen bonds according to their distance d(H O) between the H atom and the acceptor atom. The classification based on MEM densities coincides with the usual classification of hydrogen bonds as strong, intermediate and weak [Jeffrey (1997). An Introduction to Hydrogen Bonding. Oxford University Press]. MEM and procrystal densities lead to similar values of the densities at the BCPs of hydrogen bonds, but differences are shown to prevail, such that it is found that only the true charge density, represented by MEM densities, the multipole model or some other method can lead to the correct characterization of chemical bonding. Our results do not confirm suggestions in the literature that the promolecule density might be sufficient for a characterization of hydrogen bonds.
机译:电荷密度已通过最大熵方法(MEM)从六种不同氨基酸和肽晶体的高分辨率,低温(T’20 K)X射线衍射数据确定。将MEM的动态变形密度与多极模型的静态和动态变形密度进行比较表明,在多极模型局限于各向同性位移参数和低阶的情况下,MEM可以更好地描述氢键中的电子密度H原子的多极(lmax = 1)。发现键关键点(BCP)的拓扑性质系统地取决于键的长度,但对于共价CC,CN和C-O键以及氢键以及共价CH和N而言具有不同的功能-H键。从静态多极点密度得出的AIM属性也有类似的依赖关系。势能和动能密度的比值| V(BCP)| / G(BCP)已成功地用于根据H原子与受体原子之间的距离d(H O)进行氢键分类。基于MEM密度的分类与氢键通常分为强,中和弱[Jeffrey(1997)。氢键简介。牛津大学出版社]。 MEM和原晶密度导致氢键BCP处的密度值相似,但是显示存在差异,因此发现只有以MEM密度,多极模型或其他方法表示的真实电荷密度可以导致正确表征化学键。我们的结果并未证实文献中的建议,即前分子密度可能足以表征氢键。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号