首页> 外文期刊>RSC Advances >Intracellular metabolic changes in Saccharomyces cerevisiae and promotion of ethanol tolerance during the bioethanol fermentation process
【24h】

Intracellular metabolic changes in Saccharomyces cerevisiae and promotion of ethanol tolerance during the bioethanol fermentation process

机译:酿酒酵母酿酒酵母的细胞内代谢变化和生物乙醇发酵过程中促进乙醇耐受性

获取原文
获取原文并翻译 | 示例
       

摘要

During the batch bioethanol fermentation process, although Saccharomyces cerevisiae cells are challenged by accumulated ethanol, our previous work showed that the ethanol tolerance of S. cerevisiae increased as fermentation time increased. However, the exact molecular mechanisms underlying the increased ethanol tolerance of S. cerevisiae are still poorly understood. In this study, a gas chromatography-mass spectrometry-based metabolomics strategy was used to determine the fermentation process-associated intracellular metabolic changes in S. cerevisiae cells. With the aid of partial least squares-discriminant analysis between two of the three fermentation stages (i.e., the lag, exponential, and stationary phases), 40 differential metabolites with variable importance and a projection value greater than 1 were identified. During the bioethanol fermentation process, S. cerevisiae cells could continuously remodel their membrane composition and structure to obtain higher ethanol tolerance. During the lag-exponential phase transition, in spite of a down-regulated TCA cycle, the increased ergosterol content combined with decreased saturated fatty acid content might be the most significant factor in making yeast cells more robust and ethanol-tolerant. During the exponential-stationary phase transition, a re-activated TCA cycle could provide plenty of energy, and the increased energy production together with the increased energy requirements might be partly responsible for the increased ethanol tolerance in the stationary phase. Moreover, the increased content of glycerol, trehalose, ergosterol and some amino acids also might jointly confer the yeast cells with higher ethanol tolerance. These results highlighted our knowledge about the relationship between the bioethanol fermentation process and ethanol tolerance, and could contribute to the construction of feasible ethanologenic strains with higher ethanol tolerance.
机译:在批量生生物乙醇发酵过程中,尽管酿酒酵母细胞受到累积乙醇的挑战,但我们以前的作品表明,随着发酵时间的增加,S. Cerevisiae的乙醇耐受性增加。然而,基础的乙醇耐受性潜在的精确分子机制仍然很清楚。在该研究中,用于确定基于气相色谱 - 质谱的代谢物策略来确定酿酒酵母细胞中的发酵过程相关的细胞内代谢变化。借助于三个发酵阶段中的两种(即,滞后,指数和固定相中中的两个判别分析,鉴定了40个具有可变重要性的40个差分代谢物和大于1的投影值。在生物乙醇发酵过程中,S.酿酒酵母细胞可以连续地重塑它们的膜组合物和结构以获得更高的乙醇耐受性。在滞后导阶段过渡期间,尽管有下调的TCA循环,但增加的Ergosterol含量与饱和脂肪酸含量降低的增加可能是使酵母细胞更稳健和乙醇耐受性最重要的因素。在指数固定相转变期间,重新激活的TCA循环可以提供大量能量,并且随着升高的能量需求的增加,能量产量增加可能是对固定相中乙醇耐受性增加的部分原因。此外,甘油,海藻糖,Ergoster索和一些氨基酸的含量增加也可能共同赋予酵母细胞具有更高的乙醇耐受性。这些结果强调了我们对生物乙醇发酵过程和乙醇耐受性关系的知识,并且可以有助于构建具有更高乙醇耐受性的可行的素质菌株。

著录项

  • 来源
    《RSC Advances》 |2016年第107期|共10页
  • 作者单位

    Beijing Univ Chem Technol Coll Life Sci &

    Technol Beijing Key Lab Bioproc Beijing 100029 Peoples R China;

    SOA Inst Oceanog 1 Key Lab Marine Bioact Subst Qingdao 266061 Peoples R China;

    Beijing Univ Chem Technol Coll Life Sci &

    Technol Beijing Key Lab Bioproc Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Coll Life Sci &

    Technol Beijing Key Lab Bioproc Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Coll Life Sci &

    Technol Beijing Key Lab Bioproc Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Coll Life Sci &

    Technol Beijing Key Lab Bioproc Beijing 100029 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

  • 入库时间 2022-08-19 22:33:14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号