...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Effects of non-equilibrium excitation on methane oxidation in a low-temperature RF discharge
【24h】

Effects of non-equilibrium excitation on methane oxidation in a low-temperature RF discharge

机译:非平衡激发对低温RF放电甲烷氧化的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The kinetic effects of non-equilibrium excitation by direct electron impact on low-temperature oxidation of CH4 were investigated by experiment and simulation. We focused on the vibrational-electronic-chemistry coupling of methane and oxygen molecules under conditions of immediate reduced electric field strengths of 30-100 Td in an RF dielectric barrier discharge. A detailed plasma chemistry mechanism governing the oxidation processes in an He/CH4/O-2 combustible mixture was proposed and studied by including a set of electron impact reactions, dissociative recombination reactions, reactions involving vibrationally- and electronically- excited species, and important three-body recombination reactions. A linear increase in reactant consumption with an increase in plasma power was observed experimentally. This suggested the presence of decoupling between the molecular excitation by plasma and the low-temperature chemistry. However, CO formation showed a non-linear trend, with its formation increasing with lower energy inputs and decreasing at higher energy inputs. By modelling the chemical kinetic sensitivity and reaction pathways, we found that the formation of radicals via the chain propagation reactions CH4 + O(D-1) -> CH3 + OH, and O-2(a(1)Delta g) + H -> O + OH was mainly accelerated by the electronically excited species O(D-1) and O-2(a(1)Delta g). The numerical simulation also revealed that under conditions of incomplete relaxation, the vibrational species CH4(v) and O-2(v) enhanced chain propagating reactions, such as CH4(v) + O -> CH3 + OH, CH4(v) + OH -> CH3 + H2O, O-2(v) + H -> O + OH, thus stimulating the production of active radicals and final products. Specifically, for an E/N value of 68.2 Td in a stoichiometric mixture (0.05 CH4/0.1 O-2/0.85 He), O(1D), CH4(v13), and O-2(v) were estimated to contribute to 12.7%, 3.6%, and 3.8% of the production of OH radicals respectively. The reaction channel CH4(v13) + OH -> H2O + CH3 was estimated to be responsible for 1.6% of the H2O formation. These results highlight the strong roles of vibrational states in a complex plasma chemistry system and provide new insights into the roles of excited species in the low-temperature oxidation kinetics of methane.
机译:通过实验和模拟研究了通过直接电子对CH4低温氧化直接电子产生的非平衡激发的动力学效应。在RF电介质屏障放电的立即降低电场强度的状态下,我们专注于甲烷和氧分子的振动电子化学耦合。提出了一种详细的血浆化学机制,用于通过包括一组电子抗冲反应,离缀重组反应,涉及振动和电子兴奋的物种的反应来提出和研究,并研究了用于HE / CH4 / O-2可燃混合物中的氧化方法。 - 体重重组反应。通过实验观察到随着等离子体功率增加的反应物消耗的线性增加。这表明存在血浆和低温化学分子激发之间的去耦。然而,CO形成显示了非线性趋势,其形成随着能量输入的较低能量输入和较高能量输入而减小。通过建模化学动力学灵敏度和反应途径,我们发现通过链繁殖反应CH 4 + O(D-1) - > CH 3 + OH和O-2(A(1)ΔG)+ H形成自由基 - > O + OH主要由电子激发物种O(D-1)和O-2(A(1)ΔG)加速。数值模拟还显示,在不完全弛豫的条件下,振动物种CH4(V)和O-2(V)增强的链繁殖反应,例如CH 4(V)+ O-> CH 3 + OH,CH 4(V)+ OH - > CH3 + H2O,O-2(V)+ H - > O + OH,从而刺激产生主动自由基和最终产品的生产。具体地,在化学计量混合物中的68.2 Td的E / N值(0.05 CH 4 / 0.1 O-2 / 0.85 HE),估计O(1D),CH 4(V13)和O-2(V)贡献分别为OH激进的12.7%,3.6%和3.8%。估计反应通道CH4(V13)+ OH - > H 2 O + CH3负责1.6%的H2O形成。这些结果突出了振动状态在复杂的等离子体化学系统中的强大作用,并提供了新的洞察力在甲烷低温氧化动力学中的兴奋性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号