首页> 美国政府科技报告 >Kinetic Effects of Non-Equilibrium Plasma-Assisted Methane Oxidation on Diffusion Flame Extinction Limits.
【24h】

Kinetic Effects of Non-Equilibrium Plasma-Assisted Methane Oxidation on Diffusion Flame Extinction Limits.

机译:非平衡等离子体辅助甲烷氧化对扩散火焰消光极限的动力学效应。

获取原文

摘要

The kinetic effects of low temperature non-equilibrium plasma assisted CH4 oxidation on the extinction of partially premixed methane flames was studied at 60 Torr by blending 2% CH4 by volume into the oxidizer stream of a counterflow system. The experiments showed that non-equilibriumplasma can dramatically accelerate the CH4 oxidation at low temperature. The rapid CH4 oxidation via plasma assisted combustion resulted in fast chemical heat release and extended the extinction limits significantly. Furthermore experimental results showed that partial fuel mixing in the oxidizer stream led to a dramatic decrease of O concentration due to its rapid consumption by CH4 oxidation at low temperature. The products of plasma assisted CH4 oxidation were measured using the Two-photon Absorption Laser-Induced Fluorescence (TALIF) method (for atomic oxygen, O), Fourier Transform Infrared (FTIR) spectroscopy and Gas Chromatography (GC). The product concentrations were used to validate the plasma assisted combustion kinetic model. The comparisons showed the kinetic model over-predicted the CO, H2O and H2 concentrations and under-predicted CO2 concentration. A path flux analysis showed that O generated by the plasma was the critical species for extinction enhancement. In addition, the results showed that O was produced mainly by direct electron impact dissociation reactions and the collisional dissociation reactions of electronically excited molecules with O2. Moreover, these reactions involving electron impact and excited species collisional dissociation of CH4 contributed approximately a mole fraction of 0.1 of total radical production. The present experiments produced quantitative species and extinction data of low temperature plasma assisted combustion to constrain the uncertainties in plasma/flame kinetic models.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号