首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Significantly improved Li-ion diffusion kinetics and reversibility of Li2O in a MoO2 anode: the effects of oxygen vacancy-induced local charge distribution and metal catalysis on lithium storage
【24h】

Significantly improved Li-ion diffusion kinetics and reversibility of Li2O in a MoO2 anode: the effects of oxygen vacancy-induced local charge distribution and metal catalysis on lithium storage

机译:显着改善MOO2阳极中Li2O的锂离子扩散动力学和可逆性:氧空位诱导的局部电荷分布和金属催化对锂储存的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Sluggish Li-ion diffusion kinetics and low initial coulombic efficiency (CE) are two big issues to be urgently solved for the MoO2 anode. Herein, we achieve significantly improved Li-ion diffusion kinetics and reversibility of Li2O in a MoO2 anode by elaborately constructing oxygen vacancies and atomic-level spatial distribution of a Ni catalyst, therefore evidently boosting its rate behavior and initial CE. The oxygen vacancy and highly distributed metallic Ni modulation is achieved by finely controlling the annealing time. The density functional theory (DFT) calculations reveal that the creation of oxygen vacancies results in unbalanced charge distribution within MoO2, thus inducing a foreign coulomb force to boost the Li-ion transfer. Furthermore, the metallic Ni in Ni/MoO2-delta can perform as an effective catalyst to ensure the fully reversible conversion of the as-formed Li2O, thereby increasing the initial CE. Benefiting from this multiscale coordinated design, Ni/MoO2-delta displays high discharge capacity (1630.9 mA h g(-1) at 0.2 A g(-1)), large initial CE (83.7%), and excellent rate capability, and outperforms most of the previously reported MoO2-based anodes. Such a design concept not only brings MoO2 one big step closer to practical application, but also can be extended to guide the design of other anode materials with high theoretical capacity.
机译:缓慢的锂离子扩散动力学和低初始库仑效率(CE)是用于MOO2阳极迫切亟待解决的两个大问题。在此,通过精心构建Ni催化剂的氧空位和原子水平空间分布,在MOO2阳极中实现显着改善的锂离子扩散动力学和Li2O的可逆性,从而提高其速率行为和初始CE。通过精细地控制退火时间来实现氧空位和高度分布的金属Ni调制。密度泛函理论(DFT)计算表明,氧空位的产生导致MOO2内的不平衡电荷分布,从而诱导外部库仑力以提高锂离子转移。此外,Ni / MOO2-DELTA中的金属Ni可以作为有效催化剂进行,以确保AS形成的Li2O的完全可逆转化,从而增加初始CE。从这种多尺度协调设计中受益,NI / MOO2-DELTA显示出高放电容量(1630.9 mA Hg(-1),0.2 A g(-1)),初始CE(83.7%)和优异的速率能力,最优异先前报道的基于MOO2的阳极。这种设计概念不仅带来了更加靠近实际应用的MOO2一步,而且还可以扩展到指导其他阳极材料的设计具有高理论能力。

著录项

  • 来源
  • 作者单位

    Beijing Inst Technol Sch Chem &

    Chem Engn Beijing Key Lab Photoelect Electrophoton Convers Key Lab Cluster Sci Minist Educ China Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Chem &

    Chem Engn Beijing Key Lab Photoelect Electrophoton Convers Key Lab Cluster Sci Minist Educ China Beijing 100081 Peoples R China;

    Beijing Inst Technol Sch Chem &

    Chem Engn Beijing Key Lab Photoelect Electrophoton Convers Key Lab Cluster Sci Minist Educ China Beijing 100081 Peoples R China;

    Chinese Acad Sci Inst High Energy Phys Beijing Synchrotron Radiat Lab Beijing 100049 Peoples R China;

    Beijing Inst Technol Sch Chem &

    Chem Engn Beijing Key Lab Photoelect Electrophoton Convers Key Lab Cluster Sci Minist Educ China Beijing 100081 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号