首页> 外文期刊>Journal of Materials Processing Technology >Modeling A Scanning-Mask Projection Vat Photopolymerization System For Multiscale Additive Manufacturing
【24h】

Modeling A Scanning-Mask Projection Vat Photopolymerization System For Multiscale Additive Manufacturing

机译:用于多尺度添加剂制造的扫描掩模投影增值税光聚合系统

获取原文
获取原文并翻译 | 示例
           

摘要

Industries such as orthodontics and athletic apparel are adopting vat photopolymerization (VP) to manufacture customized products with performance tailored through geometry. However, vat photopolymerization is limited by low manufacturing speeds and the trade-off between manufacturable part size and feature resolution. Current VP platforms and their optical sub-systems allow for simultaneous maximization of only two of three critical manufacturing metrics: layer fabrication time, fabrication area, and printed feature resolution. The Scanning Mask Projection Vat Photopolymerization (S-MPVP1) system was developed to address this shortcoming. However, models developed to determine S-MPVP process parameters are accurate only for systems with an intensity distribution that can be approximated with a first order Gaussian distribution. Limitations of optical elements and the use of heterogeneous photopolymers result in non-analytic intensity distributions. Modeling the effect of non-analytic intensity distribution on the resultant cure profile is necessary for accurate manufacturing of multiscale products. In this work, a model to predict the shape of cured features using analytic and non-analytic intensity distribution is presented. First, existing modeling techniques developed for laser and mask projection VP processes were leveraged to create a numerical model to relate the process parameters (i.e. scan speed, mask pattern irradiance) of the S-MPVP system with the resulting cure profile. Then, by extracting the actual intensity distribution from the resin surface, we demonstrate the model's ability to use non-analytic intensity distribution for computing the irradiance for any projected pattern. Using a custom S-MPVP system, process parameters required to fabricate test specimens were experimentally determined. These parameters were then input into the S-MPVP model and the resulting cure profiles were simulated. Comparison between the simulated and printed specimens dimensions demonstrates the model's effectiveness in predicting the dimensions of the cured shape with an error of 2.9%.
机译:矫正剂和运动服饰等行业正在采用VAT光聚合(vp),以通过几何定制的性能制造定制产品。然而,VAT光聚合通过低制造速度和可制造部件尺寸和特征分辨率之间的折衷受限。当前的VP平台及其光学子系统允许同时最大化三个关键制造度量中的两个:层制造时间,制造区域和印刷特征分辨率。开发了扫描掩模投影VAT光聚合(S-MPVP1)系统以解决这种缺点。然而,开发的模型对于确定S-MPVP工艺参数的模型仅适用于具有强度分布的系统,该系统可以用第一订单高斯分布近似。光学元件的限制和异质光聚合物的使用导致非分析强度分布。建模非分析强度分布对所得固化曲线的影响是准确制造多尺度产品所必需的。在这项工作中,提出了一种模型,用于预测使用分析和非分析强度分布的固化特征的形状。首先,利用用于激光和掩模投影副本VP工艺的现有建模技术以创建一个数字模型,以将S-MPVP系统的处理参数(即扫描速度,掩模图案辐照度)与所得到的固化曲线相关。然后,通过从树脂表面提取实际强度分布,我们证明了模型使用非分析强度分布来计算任何投影模式的辐照度。使用自定义S-MPVP系统,实验确定制造测试样品所需的工艺参数。然后将这些参数输入到S-MPVP模型中,并模拟所得到的固化型材。模拟和印刷样本尺寸之间的比较展示了模型在预测固化形状的尺寸时的有效性,误差为2.9%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号