首页> 外文期刊>Mechanics of materials >Investigation on the failure mechanism of triply periodic minimal surface cellular structures fabricated by Vat photopolymerization additive manufacturing under compressive loadings
【24h】

Investigation on the failure mechanism of triply periodic minimal surface cellular structures fabricated by Vat photopolymerization additive manufacturing under compressive loadings

机译:压缩载荷作用下Vat光聚合增材制造三周期周期性最小表面胞结构的失效机理研究

获取原文
获取原文并翻译 | 示例
           

摘要

Triply periodic minimal surface (TPMS) cellular structures have been shown to be a versatile source for biomorphic scaffold designs because of high surface-to-volume ratio, suitable structural geometry for cell growth, and adjustable elastic modulus. Additive Manufacturing(AM) is the most promising technique for producing TPMS due to its capability to control size, size distribution, geometry and continuity of individual pores within the scaffold. In this paper, the effects of pore morphology as well as porosity on the deformation and failure mechanisms of such structures under compression are investigated. To do so, P and G structures with different porosities are fabricated using Digital Light Processing (DLP) technique. All the samples are examined under various compressive loading/unloading cycles, and the stress-strain responses as well as in-situ images of the deformation are obtained. The results show that the main failure mechanism of G structures is the formation of primary and secondary shear bands. Creation of each front of the shear bands and the location of their initiation depend on the amount of porosity and loading conditions. Such influences are also observed in P structures, where failure under compressive loads occurs layer by layer or all at once in the whole specimen.
机译:三重周期性最小表面(TPMS)细胞结构已被证明是生物形态支架设计的通用来源,因为它具有高的表面体积比,适合细胞生长的结构几何形状以及可调节的弹性模量。增材制造(AM)是生产TPMS的最有前途的技术,因为它能够控制支架内各个孔的尺寸,尺寸分布,几何形状和连续性。本文研究了孔隙形态和孔隙率对此类结构在压缩状态下变形和破坏机理的影响。为此,使用数字光处理(DLP)技术制造了具有不同孔隙率的P和G结构。在各种压缩加载/卸载循环下检查所有样品,并获得应力-应变响应以及变形的原位图像。结果表明,G结构的主要破坏机制是一次剪切带和二次剪切带的形成。剪切带的每个前沿的产生和其引发的位置取决于孔隙率和载荷条件。在P结构中也观察到这种影响,在P结构中,在整个试样中,压缩载荷下的破坏会逐层或一次发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号