...
首页> 外文期刊>Journal of Applied Polymer Science >Tailoring terpenoid plasma polymer properties by controlling the substrate temperature during PECVD
【24h】

Tailoring terpenoid plasma polymer properties by controlling the substrate temperature during PECVD

机译:通过在PECVD期间控制衬底温度来剪裁Terpenoid等离子体性质

获取原文
获取原文并翻译 | 示例

摘要

Polymers derived from natural, minimally-processed materials have recently emerged as a more sustainable alternative to synthetic polymers, with promising applications in biocompatible and biodegradable devices. Plasma-enhanced deposition is well-suited to one-step, fast, and efficient synthesis of highly crosslinked inert polymers directly from natural resources, however, fabrication of biologically active polymers remains a challenge. Plasma processing parameters influence the properties such as surface energy, roughness, morphology, and chemical composition of deposited polymers and thus their final applications. This article reports on the important role of substrate temperature (T-S) in the chemical composition, wettability, refractive index, and crosslinking density of plasma polymers derived from terpenoids. Experiments are conducted as a function of deposition power P-d, and substrate temperature, T-S. T-S varied from 40 to 280 degrees C and is externally controlled. Atomic force microscopy analysis reveals the change in deposition mechanism attributed to shadowing effect at higher T-S and P-d. Increase in band gap (E-g) with high T-S deposition for terpenoid based plasma polymers is observed. Swelling behavior analyzed by in situ ellipsometry affirms the enhanced crosslink density with increasing deposition rate. Fourier transform infrared analysis exhibits the formation of additional chemical moieties with increasing T-S. Increase in deposition rate with increasing T-S at higher P-d supports the theory of direct incorporation of depositing particles as dominant mechanism of plasma polymerization in this study. (C) 2017 Wiley Periodicals, Inc.
机译:最近衍生自天然的微量加工材料的聚合物作为合成聚合物的更可持续的替代品,具有前景的生物相容性和可生物降解装置。等离子体增强的沉积非常适合于直接来自天然资源的一步,快速,高效地合成高度交联的惰性聚合物,然而,生物活性聚合物的制备仍然是挑战。等离子体处理参数影响沉积聚合物的表面能,粗糙度,形态和化学成分等性质,因此是它们的最终应用。本文报告了底物温度(T-S)在衍生自三萜类化合物的化学成分,润湿性,折射率和交联密度的基材温度(T-S)的重要作用。实验是作为沉积功率P-D的函数的函数,以及衬底温度T-S。 T-S从40到280摄氏度变化,外部控制。原子力显微镜分析显示归因于较高T-S和P-D的阴影效果的沉积机制的变化。观察到具有高T-S沉积的带隙(E-G)增加基于萜类醇的血浆聚合物。通过原位椭圆形测定分析的膨胀行为肯定了增强的交联率随着沉积速率的增加。傅里叶变换红外分析表现出额外的化学部分的形成随着T-S的增加。在较高P-D处增加T-S增加沉积速率增加了沉积颗粒作为本研究中等离子体聚合的主要机理的直接掺入理论。 (c)2017 Wiley期刊,Inc。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号