首页> 外文期刊>The Journal of Chemical Physics >Dynamics of an excess hole in the 1-methyl-1-butyl-pyrrolidinium dicyanamide ionic-liquid
【24h】

Dynamics of an excess hole in the 1-methyl-1-butyl-pyrrolidinium dicyanamide ionic-liquid

机译:1-甲基-1-丁基 - 吡咯烷烷二氰胺离子液中的多余孔的动态

获取原文
获取原文并翻译 | 示例
           

摘要

In a set of recent publications [C. J. Margulis et al., J. Am. Chem. Soc. 133, 20186 (2011); C. H. Xu et al., J. Am. Chem. Soc. 135, 17528 (2013); C. H. Xu and C. J. Margulis, J. Phys. Chem. B 119, 532 (2015); and K. B. Dhungana et al., J. Phys. Chem. B 121, 8809 (2017)], we explored for selected ionic liquids the early stages of excess charge localization and reactivity relevant both to electrochemical and radiation chemistry processes. In particular, Xu and Margulis [J. Phys. Chem. B 119, 532 (2015)] explored the dynamics of an excess electron in 1-methyl-1-butyl-pyrrolidinium dicyanamide. When electrons are produced from an ionic liquid, the more elusive hole species are also generated. Depending on the nature of cations and anions and the relative alignment of their electronic states in the condensed phase, the very early hole species can nominally be neutral radicals-if the electron is generated from anions-or doubly charged radical cations if their origin is from cations. However, in reality early excess charge localization is more complex and often involves more than one ion. The dynamics and the transient spectroscopy of the hole are the main objects of this study. We find that in the case of 1-methyl-1-butyl-pyrrolidinium dicyanamide, it is the anions that can most easily lose an electron becoming radical species, and that hole localization is mostly on anionic nitrogen. We also find that the driving force for localization of an excess hole appears to be smaller than that for an excess electron in 1-methyl-1-butyl-pyrrolidinium dicyanamide. The early transient hole species can absorb light in the visible, ultraviolet, and near infrared regions, and we are able to identify the type of states being connected by these transitions. Published by AIP Publishing.
机译:在一系列最近的出版物中[C. J.Margulis等,J.AM。化学。 SOC。 133,20186(2011); C. H. Xu等,J.AM。化学。 SOC。 135,17528(2013年); C. H. Xu和C.J.Margulis,J.Mym。化学。 B 119,532(2015);和K.B.Dhungana等人。,J. phy。化学。 B 121,8809(2017)],我们探索了所选离子液体的早期电荷定位的早期阶段和电化学和辐射化学过程的反应性。特别是徐和margulis [J.物理。化学。 B 119,532(2015)]探索了二氰胺中1-甲基-1-丁基 - 吡咯烷酰胺中的过量电子的动态。当电子从离子液体产生电子时,也产生更难以捉摸的孔物质。取决于阳离子和阴离子的性质以及它们的电子状态在冷凝阶段的相对对准,非常早期的孔物种可以名义上是中性的自由基 - 如果电子从阴离子或双重带电的自由基阳离子产生,则阳离子。然而,在现实中,早期过量充电定位更复杂,并且通常涉及多于一个离子。该孔的动态和瞬态光谱是本研究的主要目的。我们发现,在二氰胺的1-甲基-1-丁基 - 吡咯烷鎓的情况下,可以最容易地失去电子成为自由基物质的阴离子,并且该孔定位主要是在阴离子氮上。我们还发现,过量孔定位的驱动力似乎小于1-甲基-1-丁基 - 吡咯烷酰胺中的过量电子。早期的瞬态孔物质可吸收光在可见光,紫外,和近红外区域,并且我们能够识别由这些过渡连接状态的类型。通过AIP发布发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号