首页> 外文期刊>Current Science: A Fortnightly Journal of Research >In silico prediction of gene knockout candidates in Escherichia coli genome-scale model for enhanced succinic acid production from glycerol
【24h】

In silico prediction of gene knockout candidates in Escherichia coli genome-scale model for enhanced succinic acid production from glycerol

机译:大肠杆菌基因组规模模型中基因敲除候选物的计算机模拟预测,可提高甘油生产琥珀酸的能力

获取原文
获取原文并翻译 | 示例
       

摘要

The use of genome-scale models of Escherichia coli to guide future metabolic engineering strategies for increased succinic acid production has received renewed attention in recent years. Substrate selectivity such as glycerol is of particular interest, because it is currently generated as a by-product of biodiesel industry and therefore can serve as a solitary carbon source. However, study on the prediction of gene knockout candidates for enhanced succinate production from glycerol using Minimization of Metabolic Adjustment Algorithm with the OptFlux software platform remained underexplored. Here, we show that metabolic engineering interventions by gene knockout simulation of some pyruvate dissimilating pathway enzymes (lactate dehydrogenase A and pyruvate formate lyase A) using E. coli genome-scale model can reduce acetate flux and enhance succinic acid production under anaerobic conditions. The introduced genetic perturbations led to substantial improvement in succinate flux of about 597% on glycerol and 120% on glucose than that of the wild-type control strain BSKO. We hypothesize that the deletion of pyruvate formate lyase A (pflA) in E. coli can led to no acetate production from glucose, lower acetate production from glycerol and increased succinic acid productivities on both substrates under anaerobic conditions. Our results demonstrate a predicted increase in succinate production (597% higher than the wild-type model) among others, from glycerol after deletion of pflA/b0902 gene in E. coli genome-scale model. This would open up a novel platform for model-guided experimental inquiry and/or allow a comprehensive biological discovery on the metabolic processes of pflA in E. coli for succinate production when glycerol is the substrate.
机译:近年来,使用大肠杆菌的基因组规模模型来指导未来的代谢工程策略以提高琥珀酸产量的方法受到了新的关注。底物选择性(例如甘油)特别受关注,因为它目前是生物柴油工业的副产品,因此可以用作单独的碳源。然而,利用OptFlux软件平台使用最小化代谢调节算法来预测甘油增强琥珀酸生产的基因敲除候选物的研究仍处于探索之中。在这里,我们显示了通过大肠杆菌基因组规模模型通过一些丙酮酸异化途径酶(乳酸脱氢酶A和丙酮酸甲酸裂解酶A)的基因敲除模拟进行的代谢工程干预,可以减少厌氧条件下的乙酸通量并提高琥珀酸的产生。与野生型对照菌株BSKO相比,引入的遗传扰动导致琥珀酸在甘油上的琥珀酸通量显着改善,在葡萄糖上的琥珀酸通量显着提高,在葡萄糖上的琥珀酸通量显着提高120%。我们推测,在厌氧条件下,大肠杆菌中丙酮酸甲酸酯裂解酶A(pflA)的缺失可以导致葡萄糖中无乙酸盐生成,甘油中乙酸盐生成量降低以及琥珀酸生产率的提高。我们的结果证明,在大肠杆菌基因组规模模型中删除pflA / b0902基因后,甘油产生的琥珀酸产量预计会增加(比野生型模型高597%)。当甘油为底物时,这将为模型指导的实验探索和/或允许在大肠杆菌中pflA的代谢过程的全面生物学发现中琥珀酸生产提供全面的生物学发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号