...
首页> 外文期刊>Physical Review, B. Condensed Matter >Micromagnetic structures and microscopic magnetization-reversal processes in epitaxial Fe/GaAs(001) elements
【24h】

Micromagnetic structures and microscopic magnetization-reversal processes in epitaxial Fe/GaAs(001) elements

机译:外延Fe / GaAs(001)元素中的微磁结构和微观磁化 - 反转过程

获取原文
获取原文并翻译 | 示例

摘要

The in-plane size and orientation-dependent micromagnetic structures of thin epitaxial Fe(001) elements were studied by Lorentz electron microscopy. It is found that the single-domain remanent state supported by continuous epitaxial films with in-plane anisotropy decays into a multidomain configuration upon reducing the film lateral dimensions. For 150-Angstrom-thick Fe(001) elements, such drastic changes in the remanent domain structure and reversal processes occur when the element size is reduced to similar to 10 mu m. This transition can be explained as a consequence of the in-plane dipolar (shape anisotropy) contribution to the total energy becoming comparable with that of the magnetocrystalline anisotropy at this size. Due to the interplay between in-plane shape and magnetocrystalline anisotropies, novel micromagnetic phenomena were observed. Distinct microscopic reversal processes arise according to not only the crystallographic direction along which the field is applied but also the orientation of the element edges. For magnetization reversal along the in-plane [100] directions (easy axes), domains nucleate at either element edges or corners depending on the orientation of element edges. For applied fields aligned along the in-plane [110] directions (hard axes), a fine-scale stripe (width less than or equal to 200 nm) domain structure develops upon reducing the applied field from saturation. In addition to coherent rotation and domain-wall displacement, a 90 degrees coherent jump reversal process has been observed for the elements with edges parallel to the [110] directions. The micromagnetic behavior of these epitaxial elements is substantially different from those of either continuous epitaxial Fe(001) films [E. Gu et al., Phys. Rev. B 51, 3596 (1995), C. Daboo et al., Phys. Rev. B 51, 15 964; (1995)] or polycrystalline elements in which the magnetocrystalline anisotropy is negligibly small. As the relative contributions of the in-plane shape and magnetocrystalline anisotropies can be modified by varying the element size, shape and orientation, these mesoscopic epitaxial elements not only offer an ideal model to study the roles of anisotropies in determining the micromagnetic structures but also allow the magnetic spin configuration to be controlled which could be useful for device applications, e.g., spin-polarized injection contacts and magnetic memory elements. [References: 27]
机译:通过Lorentz电子显微镜研究了薄外延Fe(001)元件的面内尺寸和取向依赖性微磁结构。发现在减少薄膜横向尺寸时,通过在平面内各向异性的连续外延膜支撑的单域重膜状态,其在多畴各向异性中。对于150埃厚的Fe(001)元件,当元件尺寸减少到类似于10μm时,发生剩余域结构和反转过程的这种剧烈变化。这种转变可以作为面内偶极(形状各向异性)对总能量的贡献与这种尺寸的磁晶各向异性相当的贡献来解释。由于面内形状和磁晶体各向异性之间的相互作用,观察到新的微磁性现象。不同的微观反转过程由于不仅沿着该领域的晶体方向而且也是元件边缘的方向的。对于沿着平面内[100]方向(简易轴)的磁化反转,根据元件边缘的方向,在元件边缘或角落处成核。对于沿着平面内[110]方向(硬轴)对齐的施加场,在减少饱和的场上,在从饱和度降低所施加的场时,微尺寸条纹(宽度小于或等于200nm)域结构。除了相干旋转和畴壁位移之外,已经针对与[110]方向平行的元件观察到90度相干的跳转反转过程。这些外延元素的微磁性行为与连续外延Fe(001)膜的微磁行为基本上不同[E. qu等人。,phy。 Rev. B 51,3596(1995),C. daboo等,Phy。 Rev. B 51,15 964; (1995)]或多晶元素,其中磁镀晶各向异性忽略不足。由于通过改变元素尺寸,形状和取向来修改面内形状和磁晶体各向异性的相对贡献,这些介观外延元素不仅提供了研究各向异性在确定微磁结构而且允许的理想模型待控制的磁性自旋配置,其可用于器件应用,例如旋转偏振的注入触点和磁存储器元件。 [参考:27]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号