首页> 外文期刊>Physical review, B >Renormalization group approach to symmetry protected topological phases
【24h】

Renormalization group approach to symmetry protected topological phases

机译:重整化组对称性对称保护拓扑阶段

获取原文
获取原文并翻译 | 示例

摘要

A defining feature of a symmetry protected topological phase (SPT) in one dimension is the degeneracy of the Schmidt values for any given bipartition. For the system to go through a topological phase transition separating two SPTs, the Schmidt values must either split or cross at the critical point in order to change their degeneracies. A renormalization group (RG) approach based on this splitting or crossing is proposed, through which we obtain an RG flow that identifies the topological phase transitions in the parameter space. Our approach can be implemented numerically in an efficient manner, for example, using the matrix product state formalism, since only the largest first few Schmidt values need to be calculated with sufficient accuracy. Using several concrete models, we demonstrate that the critical points and fixed points of the RG flow coincide with the maxima and minima of the entanglement entropy, respectively, and the method can serve as a numerically efficient tool to analyze interacting SPTs in the parameter space.
机译:一个尺寸中对称保护的拓扑相(SPT)的定义特征是任何给定的两分的Schmidt值的退化。对于系统进行分离两个SPT的拓扑相变,必须在临界点分开或交叉以改变其退化。提出了一种基于该分裂或交叉的重整化组(RG)方法,通过该组方法,我们通过该方法获得RG流,该流量识别参数空间中的拓扑相交。我们的方法可以以有效的方式以数值方式实现,例如,使用矩阵产品状态形式主义,因为只需要通过足够的精度来计算最大的前几个施密值。使用多种具体模型,我们证明了RG流的关键点和固定点分别与缠结熵的最大值和最小值相一致,该方法可以用作分析参数空间中的交互SPT的数字有效工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号