...
首页> 外文期刊>Physical review, B >Spin-orbit coupling effects in zinc-blende InSb and wurtzite InAs nanowires: Realistic calculations with multiband k center dot p method
【24h】

Spin-orbit coupling effects in zinc-blende InSb and wurtzite InAs nanowires: Realistic calculations with multiband k center dot p method

机译:锌 - Blende Insb和Wurtzite Inas纳米线中的旋转轨道耦合效应:具有多频带K中心点P方法的现实计算

获取原文
获取原文并翻译 | 示例

摘要

A systematic numerical investigation of spin-orbit fields in the conduction bands of III-V semiconductor nanowires is performed. Zinc-blende (ZB) InSb nanowires are considered along [001], [011], and [111] directions, while wurtzite (WZ) InAs nanowires are studied along [0001] and [10 (1) over bar0] or [11 (2) over bar0] directions. Robust multiband k center dot p Hamiltonians are solved by using plane-wave expansions of real-space parameters. In all cases, the linear and cubic spin-orbit coupling parameters are extracted for nanowire widths from 30 to 100 nm. Typical spin-orbit energies are on the mu eV scale, except for WZ In As nanowires grown along [10 (1) over bar0] or [11 (2) over bar0], in which the spin-orbit energy is about meV, largely independent of the wire diameter. Significant spin-orbit coupling is obtained by applying a transverse electric field, causing the Rashba effect. For an electric field of about 4 mV/nm, the obtained spin-orbit energies are about 1 meV for both materials in all investigated growth directions. The most favorable system, in which the spin-orbit effects are maximal, are WZ InAs nanowires grown along [1010] or [11 (2) over bar0] since here spin-orbit energies are giant (meV) already in the absence of electric field. The least favorable are InAs WZ nanowires grown along [0001] since here even the electric field does not increase the spin-orbit energies beyond 0.1 meV. The presented results should be useful for investigations of optical orientation, spin transport, weak localization, and superconducting proximity effects in semiconductor nanowires.
机译:进行了III-V半导体纳米线的导通带中的自旋轨道场的系统数值研究。锌 - 混合(ZB)INSB纳米线沿[001],[011]和[111]方向,而Wurtzite(WZ)InAs纳米线沿[0001]和[10(1)上方]或[11] (2)在Bar0]方向。通过使用实际空间参数的平面波扩展来解决鲁棒多频带K中心点P Hamiltonians。在所有情况下,线性和立方旋转轨道耦合参数被提取为30至100nm的纳米线宽度。典型的旋转轨道能量在MU EV级别上,除了作为纳米线的WZ沿[10(1)覆盖律栏]或[11(2)),其中旋转轨道能量大约是MEV,在很大程度上独立于电线直径。通过施加横向电场来获得显着的自旋轨道耦合,从而导致RASHBA效应。对于约4mV / nm的电场,所获得的旋转轨道能量为所有调查的生长方向的两种材料约为1meV。最有利的系统,其中旋转轨道效应最大,是沿着[1010]或[11(2)上方的WIAS纳米线,因为这里旋转轨道能量是巨大的(MEV)已经在没有电动的情况下场地。最不利的是INAS WZ纳米线沿[0001]由于甚至电场即使是电场也不会增加超过0.1 meV的旋转轨道能量。所呈现的结果应有助于研究光学取向,旋转传输,弱定位和半导体纳米线中的超导邻近效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号