首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Spin-orbit coupling effects in zinc-blende InSb and wurtzite InAs nanowires: Realistic calculations with multiband k • p method
【24h】

Spin-orbit coupling effects in zinc-blende InSb and wurtzite InAs nanowires: Realistic calculations with multiband k • p method

机译:闪锌矿型InSb和纤锌矿型InAs纳米线中的自旋轨道耦合效应:多带k•p方法的实际计算

获取原文
获取原文并翻译 | 示例
           

摘要

A systematic numerical investigation of spin-orbit fields in the conduction bands of III-V semiconductor nanowires is performed. Zinc-blende (ZB) InSb nanowires are considered along [001],[011], and [111] directions, while wurtzite (WZ) InAs nanowires are studied along [0001] and [1010] or [1120] directions. Robust multiband k • p Hamiltonians are solved by using plane-wave expansions of real-space parameters. In all cases, the linear and cubic spin-orbit coupling parameters are extracted for nanowire widths from 30 to 100 nm. Typical spin-orbit energies are on the μeV scale, except for WZ InAs nanowires grown along [1010] or [1120], in which the spin-orbit energy is about μeV, largely independent of the wire diameter. Significant spin-orbit coupling is obtained by applying a transverse electric field, causing the Rashba effect. For an electric field of about 4 mVm, the obtained spin-orbit energies are about 1 meV for both materials in all investigated growth directions. The most favorable system, in which the spin-orbit effects are maximal, are WZ InAs nanowires grown along [1010] or [1120] since here spin-orbit energies are giant (meV) already in the absence of electric field. The least favorable are InAs WZ nanowires grown along [0001] since here even the electric field does not increase the spin-orbit energies beyond 0.1 meV. The presented results should be useful for investigations of optical orientation, spin transport, weak localization, and superconducting proximity effects in semiconductor nanowires.
机译:对III-V族半导体纳米线的导带中的自旋轨道场进行了系统的数值研究。沿着[001],[011]和[111]方向考虑了闪锌矿(ZB)InSb纳米线,而沿着[0001]和[1010]或[1120]方向研究了纤锌矿(WZ)InAs纳米线。通过使用实空间参数的平面波扩展来求解鲁棒的多频带k•p哈密顿量。在所有情况下,都针对30至100 nm的纳米线宽度提取了线性和三次自旋轨道耦合参数。除了沿着[1010]或[1120]生长的WZ InAs纳米线外,典型的自旋轨道能量约为μeV,其中自旋轨道能量约为μeV,很大程度上与导线直径无关。通过施加横向电场而产生显着的自旋轨道耦合,从而引起Rashba效应。对于大约4 mV / nm的电场,两种材料在所有研究的生长方向上获得的自旋轨道能量约为1 meV。自旋轨道效应最大的最有利的系统是沿[1010]或[1120]生长的WZ InAs纳米线,因为这里的自旋轨道能量在没有电场的情况下已经达到(meV)。最不利的是沿[0001]生长的InAs WZ纳米线,因为这里即使电场也不会使自旋轨道能量增加到超过0.1 meV。提出的结果应可用于研究半导体纳米线中的光学取向,自旋传输,弱定位和超导邻近效应。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2018年第24期|245402.1-245402.18|共18页
  • 作者单位

    Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, 13566-590 Sao Carlos, Sao Paulo, Brazil,Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany;

    Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, 13566-590 Sao Carlos, Sao Paulo, Brazil,Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany;

    Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany,Institute of Physics, P. J. Safarik University in Kosice, Park Angelinum 9, 04001 Kosice, Slovakia;

    Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, 13566-590 Sao Carlos, Sao Paulo, Brazil,Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260, USA;

    Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号