...
首页> 外文期刊>Biochemical Engineering Journal >Rational re-design of the 'double-racemase hydantoinase process' for optically pure production of natural and non-natural L-amino acids
【24h】

Rational re-design of the 'double-racemase hydantoinase process' for optically pure production of natural and non-natural L-amino acids

机译:合理地重新设计“双消旋酶乙内酰脲酶工艺”,用于光学纯净生产天然和非天然L-氨基酸

获取原文
获取原文并翻译 | 示例
           

摘要

The "hydantoinase process" is a well-established method for the industrial production of optically pure D-amino acids. However, due to the strict D-enantioselectivity of most hydantoinase enzymes, the process is less efficient for L-amino acid production. We present a new chemo-enzymatic cascade reaction for natural and non-natural L-amino acid production from racemic mixtures of 5-monosubstituted hydantoins. This system comprised the following enzymes: D-hydantoinase from Agrobacterium tumefaciens BQL9, hydantoin racemase 1 from A. tumefaciens C58 and L-N-carbamoylase from Geobacillus stearothermophilus CECT43, together with N-succinyl-amino acid racemase from G. kaustophilus CECT4264. This latter presents catalytic promiscuity and racemizes N-carbamoyl-amino acids. This activity avoids the accumulation of N-carbamoyl-D-amino acid in the reaction due to the strict D-enantioselectivity of the hydantoinase. The optimum pH for the system proved to be 8.0, whereas optimum temperature range was 50-65 degrees C, with the maximum reaction rate at 60 degrees C. The metal ion cobalt was added directly to the reaction mixture (end concentration 1 mM), but in the case of D-hydantoinase, overexpression in presence of 0.5 mM Co2+ was also necessary. The enzymatic cascade reaction produced different optically pure L-amino acids by dynamic kinetic resolution, achieving 100% conversion even at high substrate concentrations (100 mM) with no noticeable inhibition. This total conversion demonstrates that the "double-racemase hydantoinase process" upgrades the classical "hydantoinase process" for natural and non-natural L-amino acid production. (C) 2015 Elsevier B.V. All rights reserved.
机译:“乙内酰脲酶法”是工业上生产光学纯的D-氨基酸的公认方法。然而,由于大多数乙内酰脲酶的严格的D-对映选择性,该方法生产L-氨基酸的效率较低。我们提出了从5-单取代乙内酰脲外消旋混合物的天然和非天然L-氨基酸生产的新化学酶联反应。该系统包含以下酶:来自根癌土壤杆菌BQL9的D-乙内酰脲酶,来自根癌土壤杆菌C58的乙内酰脲消旋酶1和来自嗜热脂肪嗜热芽孢杆菌CECT43的L-N-氨基甲酰酶,以及来自嗜碱杆菌G.kaustophilus CECT4264的N-琥珀酰-氨基酸消旋酶。后者呈现出催化混杂,并且使N-氨基甲酰基-氨基酸消旋化。由于乙内酰脲酶的严格的D-对映选择性,这种活性避免了反应中N-氨基甲酰基-D-氨基酸的积累。系统的最佳pH值为8.0,最佳温度范围为50-65摄氏度,最大反应速率为60摄氏度。将金属离子钴直接添加到反应混合物中(终浓度为1 mM),但对于D-乙内酰脲酶,在0.5 mM Co2 +存在下过表达也是必要的。酶促级联反应通过动态动力学拆分产生了不同的光学纯L-氨基酸,即使在高底物浓度(100 mM)下也能实现100%的转化,而没有明显的抑制作用。该总转化表明,“双消旋酶乙内酰脲酶工艺”升级了用于天然和非天然L-氨基酸生产的经典“乙内酰脲酶工艺”。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号