首页> 外文期刊>Biochemical Engineering Journal >Kinetic, oxygen mass transfer and hydrodynamic studies in a three-phase stirred tank bioreactor for the bioconversion of (+)-valencene on Yarrowia lipolytica 2.2ab
【24h】

Kinetic, oxygen mass transfer and hydrodynamic studies in a three-phase stirred tank bioreactor for the bioconversion of (+)-valencene on Yarrowia lipolytica 2.2ab

机译:在三相搅拌釜生物反应器中对解脂耶氏酵母2.2ab进行(+)-瓦伦烯生物转化的动力学,氧气传质和流体动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

The oxidation of (+)-valencene on Yarrowia lipolytica 2.2ab in a three-phase partitioning bioreactor using orange essential oil is a promising technology to market natural (+)-nootkatone overcoming both substrate and product inhibitions. The adequate determination and selection of thermodynamic, kinetic, deactivation, hydraulic and mass transport parameters are essential to perform a suitable strategy of scaling-up. This study is aimed at determining these parameters to identify through a regime analysis the mechanisms limiting the bioconversion process. The volumetric oxygen transfer coefficient (k(L)a) and the Sauter mean drop diameter (d(32)) values ranged from 10 to 116 h(-1) and 8 to 18 mu m, respectively. The substrate (k(S)) and product (k(P)) global interfacial mass transfer coefficients were determined from a modified Lewis cell. The k(S) and k(P) values ranged from 0.6 to 3.0 x 10(-5) and 2 to 3 x 10(-5) ms(-1), respectively. Finally, a kinetic model, considering a bi-substrate reaction and accounting for cell deactivation, was developed. The affinity constants for oxygen and (+)-valencene were K-O2 = 7.11 x 10(-2) mg(O2) L-1 and K-S = 7.865 x 10(-3) mg(S) L-1, respectively, while catalytic constant related to (+)-nootkatone formation was k(cat) =5.025 x 10(3) mgP mg(E)(-1) h(-1). Thus, the regime analysis in terms of the characteristic times suggested that kinetics, namely the consumption rate of (+)-valencene was the main mechanism limiting the bioconversion process. (C) 2016 Elsevier B.V. All rights reserved.
机译:在使用橙精油的三相分配生物反应器中,解脂耶氏酵母2.2ab上的(+)-瓦伦烯的氧化是一种有前途的技术,可用于克服底物和产物抑制作用的天然(+)-Nootkatone。适当确定和选择热力学,动力学,失活,水力和传质参数对于执行适当的放大策略至关重要。这项研究旨在确定这些参数,以通过方案分析确定限制生物转化过程的机制。体积氧传递系数(k(L)a)和Sauter平均液滴直径(d(32))值分别在10到116 h(-1)和8到18μm之间。底物(k(S))和乘积(k(P))的整体界面传质系数是从改良的Lewis电池确定的。 k(S)和k(P)值的范围分别为0.6到3.0 x 10(-5)和2到3 x 10(-5)ms(-1)。最后,建立了考虑双底物反应并考虑细胞失活的动力学模型。氧和(+)-瓦伦烯的亲和常数分别为K-O2 = 7.11 x 10(-2)mg(O2)L-1和KS = 7.865 x 10(-3)mg(S)L-1,而与(+)-Nootkatone形成相关的催化常数为k(cat)= 5.025 x 10(3)mgP mg(E)(-1)h(-1)。因此,根据特征时间的状态分析表明动力学,即(+)-瓦伦烯的消耗速率是限制生物转化过程的主要机理。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号