...
首页> 外文期刊>RSC Advances >Polymer/oxide bilayer dielectric for hysteresis-minimized 1 V operating 2D TMD transistors
【24h】

Polymer/oxide bilayer dielectric for hysteresis-minimized 1 V operating 2D TMD transistors

机译:用于滞后的聚合物/氧化物双层电介质最小化1 V操作2D TMD晶体管

获取原文
获取原文并翻译 | 示例

摘要

Despite their huge impact on future electronics, two-dimensional (2D) dichalcogenide semiconductor (TMD) based transistors suffer from the hysteretic characteristics induced by the defect traps located at the dielectric/TMD channel interface. Here, we introduce a hydroxyl-group free organic dielectric divinyl-tetramethyldisiloxane-bis (benzocyclobutene) (BCB) between the channel and conventional SiO2 dielectric, to practically resolve such issues. Our results demonstrate that the electrical hysteresis in the n-channel MoS2 and p-channel MoTe2 transistors were significantly reduced to less than similar to 20% of initial value after being treated with hydrophobic BCB dielectric while their mobilities increased by factor of two. Such improvements are certainly attributed to the use of the hydroxyl-group free organic dielectric, since high density interface traps are related to hydroxyl-groups located on hydrophilic SiO2. This concept of interface trap reduction is extended to stable low voltage operation in 2D MoTe2 FET with 30 nm BCB/10 nm Al2O3 bilayer dielectric, which operates well at 1 V. We conclude that the interface engineering employing the BCB dielectric offers practical benefits for the high performance and stable operation of TMD-based transistors brightening the future of 2D TMD electronics.
机译:尽管对未来的电子设备产生了巨大影响,但二维(2D)二思甲基半导体(TMD)基于晶体管的晶体管受到位于电介质/ TMD通道界面处的缺陷陷阱引起的滞后特性。在此,我们在通道和常规SiO 2电介质之间引入羟基 - 基团的无机介质二乙烯基 - 四甲基二硅氧烷 - 双(BCB),以实际地解决这些问题。我们的结果表明,在用疏水性BCB电介质处理后,N沟道MOS2和P沟道MOTE2晶体管中的电滞后显着降低至少于初始值的20%,而它们的迁移率增加了两倍。这种改进肯定归因于使用羟基 - 基团无机电电介质,因为高密度界面捕集物与位于亲水性SiO 2上的羟基 - 基团有关。界面陷阱的这种概念延伸到2D Mote2 FET中的稳定低压操作,具有30nm Bcb / 10nm Al2O3双层电介质,其在1 V时运行良好。我们得出结论,采用BCB电介质的界面工程提供了实用的益处基于TMD的晶体管的高性能和稳定运行,使2D TMD电子的未来亮化。

著录项

  • 来源
    《RSC Advances 》 |2018年第6期| 共7页
  • 作者单位

    Yonsei Univ Inst Phys &

    Appl Phys 50 Yonsei Ro Seoul 120749 South Korea;

    Yonsei Univ Inst Phys &

    Appl Phys 50 Yonsei Ro Seoul 120749 South Korea;

    Yonsei Univ Inst Phys &

    Appl Phys 50 Yonsei Ro Seoul 120749 South Korea;

    Yonsei Univ Inst Phys &

    Appl Phys 50 Yonsei Ro Seoul 120749 South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号