...
首页> 外文期刊>Nanotechnology >Designing topological defects in 2D materials using scanning probe microscopy and a self-healing mechanism: a density functional-based molecular dynamics study
【24h】

Designing topological defects in 2D materials using scanning probe microscopy and a self-healing mechanism: a density functional-based molecular dynamics study

机译:使用扫描探针显微镜和自愈合机制设计2D材料中的拓扑缺陷:基于密度的基于功能的分子动力学研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Engineering of materials at the atomic level is one of the most important aims of nanotechnology. The unprecedented ability of scanning probe microscopy to address individual atoms opened up the possibilities for nanomanipulation and nanolitography of surfaces and later on of two-dimensional materials. While the state-of-the-art scanning probe lithographic methods include, primarily, adsorption, desorption and repositioning of adatoms and molecules on substrates or tailoring nanoribbons by etching of trenches, the precise modification of the intrinsic atomic structure of materials is yet to be advanced. Here we introduce a new concept, scanning probe microscopy with a rotating tip, for engineering of the atomic structure of membranes based on two-dimensional materials. In order to indicate the viability of the concept, we present our theoretical research, which includes atomistic modeling, molecular dynamics simulations, Fourier analysis and electronic transport calculations. While stretching can be employed for fabrication of atomic chains only, our comprehensive molecular dynamics simulations indicate that nanomanipulation by scanning probe microscopy with a rotating tip is capable of assembling a wide range of topological defects in two-dimensional materials in a rather controllable and reproducible manner. We analyze two possibilities. In the first case the probe tip is retracted from the membrane while in the second case the tip is released beneath the membrane allowing graphene to freely relax and self-heal the pore made by the tip. The former approach with the tip rotation can be achieved experimentally by rotation of the sample, which is equivalent to rotation of the tip, whereas irradiation of the membrane by nanoclusters can be utilized for the latter approach. The latter one has the potential to yield a yet richer diversity of topological defects on account of a lesser determinacy. If successfully realized experimentally the concept proposed here could be
机译:原子水平的材料工程是纳米技术最重要的目标之一。扫描探针显微镜以解决单个原子的前所未有的能力开辟了表面的纳米尺寸和纳米凝视的可能性,并稍后对二维材料进行了影响。虽然最先进的扫描探针光刻方法包括通过蚀刻沟槽的基材上吸附,解吸和重新定位吸附,解吸和重新定制纳米纤维,但材料的内在原子结构的精确改性尚未成为先进的。在这里,我们介绍了一种新的概念,扫描探针显微镜,其具有旋转尖端,用于基于二维材料的膜原子结构的工程。为了表明该概念的可行性,我们展示了我们的理论研究,包括原子型建模,分子动力学模拟,傅立叶分析和电子传输计算。虽然伸展只能用于制造原子链,但我们的综合分子动力学模拟表明,通过扫描探针显微镜,旋转尖端的纳米素能够以相当可控的和可再现的方式组装二维材料中的各种拓扑缺陷。我们分析了两种可能性。在第一种情况下,探针尖端在第二壳体中从膜缩回,尖端在膜下方释放允许石墨烯自由放松并自我愈合由尖端制成的孔。通过样品的旋转实验,可以通过样品进行实验实现前者的方法,这相当于尖端的旋转,而通过纳米能器的膜照射可以用于后一种方法。由于确定性较小,后者有可能产生拓扑缺陷的液态缺陷的潜力。如果通过实验成功实现了此处提出的概念

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号