...
首页> 外文期刊>Nanotechnology >Direct?indirect bandgap transition in monolayer MoS2 induced by an individual Si nanoparticle
【24h】

Direct?indirect bandgap transition in monolayer MoS2 induced by an individual Si nanoparticle

机译:直接?单层MOS2中的间接带隙过渡由单独的Si纳米粒子引起的单层MOS2

获取原文
获取原文并翻译 | 示例

摘要

MoS2 is promising for the next generation of electronic and optoelectronic devices by virtue of its unique optical, electrical and mechanical properties. Bandgap engineering of it is an interesting topic. However, the reported factors including temperature, defect, strain and external electric field are difficult to handle precisely. Here, we demonstrated direct?indirect bandgap transition in monolayer MoS2 induced by an individual Si nanoparticle. We observed photoluminescence (PL) emission with obvious spectral redshift and broadening in the MoS2/Si heterostructures after depositing Si nanoparticles onto the surface of monolayer MoS2. Raman spectra of heterostructures show measurable shifts in contrast with the bare MoS2. Energy transfer between MoS2 and Si nanoparticles did not happen, which is demonstrated by scattering spectra of MoS2/Si heterostructures. In addition, the natural oxide layer presented on the surface of Si nanoparticles can effectively prevent the carrier transferring from Si nanoparticles to MoS2. Thus, we attribute the direct?indirect bandgap transition of monolayer MoS2 to the strain induced by Si nanoparticles controlled by their sizes. The PL intensity of MoS2/Si heterostructure depends on the size of Si nanoparticles, resulting from the enhanced optical absorption of monolayer MoS2 based on Mie resonances of Si nanoparticles. The MoS2/Si heterostructure is promising for photodetector and circuit integration.
机译:MOS2凭借其独特的光学,电气和机械性能,对下一代电子和光电器件承诺。带隙工程是一个有趣的话题。然而,报告的因素包括温度,缺陷,应变和外部电场难以精确地处理。在这里,我们展示了单独的Si纳米粒子诱导的单层MOS2中的直接α间接带隙转变。在将Si纳米颗粒沉积到单层MOS2的表面上,观察到具有明显的光谱红移和在MOS2 / Si异质结构中的显着光谱射频和展赖的光致发光(PL)发射。异质结构的拉曼光谱显示与裸MOS2相反的可测量变化。 MOS2和Si纳米颗粒之间的能量转移不会发生,这通过MOS2 / Si异质结构的散射光谱来证明。另外,在Si纳米粒子表面上呈现的天然氧化物层可以有效地防止从Si纳米颗粒转移到MOS2的载体。因此,我们将单层MOS2的间接带隙过渡归因于由其尺寸控制的Si纳米粒子诱导的菌株。 MOS2 / Si异质结构的PL强度取决于Si纳米粒子的尺寸,由基于Si纳米颗粒的MIE共振的单层MOS2的增强光学吸收产生。 MOS2 / SI异质结构是对光电探测器和电路集成的承诺。

著录项

  • 来源
    《Nanotechnology》 |2020年第6期|共8页
  • 作者单位

    Sun Yat Sen Univ State Key Lab Optoelect Mat &

    Technol Nanotechnol Res Ctr Sch Mat Sci &

    Engn Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Univ State Key Lab Optoelect Mat &

    Technol Nanotechnol Res Ctr Sch Mat Sci &

    Engn Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Univ State Key Lab Optoelect Mat &

    Technol Nanotechnol Res Ctr Sch Mat Sci &

    Engn Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Univ State Key Lab Optoelect Mat &

    Technol Nanotechnol Res Ctr Sch Mat Sci &

    Engn Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Univ State Key Lab Optoelect Mat &

    Technol Nanotechnol Res Ctr Sch Mat Sci &

    Engn Guangzhou 510275 Guangdong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    Si nanoparticle; heterostructure; monolayer MoS2; direct?indirect bandgap transition;

    机译:Si纳米粒子;异质结构;单层MOS2;直接?间接带隙过渡;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号