...
首页> 外文期刊>Nanotechnology >New coupling mechanism of titanium nitride nanosphere dimers at short separation distances
【24h】

New coupling mechanism of titanium nitride nanosphere dimers at short separation distances

机译:短分离距离下氮化钛纳米米末端二聚体的新耦合机理

获取原文
获取原文并翻译 | 示例

摘要

The coupled localized plasmon modes generated by a metal plasmonic nanoparticle (NP) dimer induces a stronger plasmon enhanced electromagnetic field as well as a stronger optical response compared to that of a single NP. Owing to the small Drude damping factor, however, the absorption bandwidth of noble metallic NPs is insufficiently broad. Herein, the near-field wide band coupling absorption for 25 nm diameter TiN nanospheres is investigated in a homo-dimer arrangement for various separation distances using the finite element method. An enhancement of the wide band coupling absorption and a red-shift is found, which can be explained by an uncomplicated dipole-dipole coupling model at interparticle distances greater than 5 nm. At short separation distances, the coupling absorption of the TiN dimer exhibits a tremendous change, which is diametrically opposite the results found for a Au dimer. This unexpected change phenomenon is shown by calculation and analysis to be owing to the change of the charge distribution approach at short separation distances, which is demonstrated to play a key role in the wide band coupling characteristic variation. With decreasing separation gap, a new coupling mechanism caused by surface charge properties is responsible for the decline in coupling absorption as well as the break in the ruler equations for both plasmon shift and temperature enhancement.
机译:由金属等离子体纳米颗粒(NP)二聚体产生的耦合局部化的等离子体模式诱导更强的等离子体增强的电磁场以及与单个NP相比的更强的光学响应。然而,由于小型磨损阻尼因子,贵贵金属NP的吸收带宽不足。这里,在使用有限元法的同源二聚体布置中研究了25nm直径锡纳米球的近场宽带耦合吸收。找到宽带耦合吸收和红色移位的增强,这可以通过在大于5nm的颗粒间距的外部距离的简单偶极子偶极耦合模型来解释。在短路间隔距离处,锡二聚体的偶联吸收表现出巨大的变化,这是截然性的与Au二聚体的结果相反。通过计算和分析示出了这种意外的变化现象,以便由于在短分离距离下的电荷分布方法的变化而进行,这被证明在宽带耦合特性变化中起着关键作用。随着分离间隙的降低,由表面电荷性能引起的新耦合机构负责耦合吸收的下降以及用于等离子体换档和温度增强的标尺方程中的断裂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号