首页> 外文期刊>Nano letters >Laser Shock Tuning Dynamic Interlayer Coupling in Graphene-Boron Nitride Moire Superlattices
【24h】

Laser Shock Tuning Dynamic Interlayer Coupling in Graphene-Boron Nitride Moire Superlattices

机译:石墨烯 - 氮化物莫尔超晶格中的激光冲击调谐动态层间耦合

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In the emergence of graphene and many two-dimensional (2D) materials, the most exciting applications come from stacking them into 3D devices, promising many excellent possibilities for neoteric electronics and optoelectronics. Layers of semiconductors, insulators, and conductors can be stacked to form van der Waals heterostructures, after the weak bonds formed between the layers. However, the interlayer coupling in these heterostructures is usually hard to modulate, resulting in difficulty to realize their emerging optical or electronic properties. Especially, the relationship between interlayer distance and interlayer coupling remains to be investigated, due to the lack of effective technology. In this work, we have used laser shocking to controllably tune the interlayer distance between graphene (Gr) and boron nitride (BN) in the Gr/BN/Gr heterostructures and the strains in the 2D heterolayers, providing a simple and effective way to modify their optic and electronic properties. After lase shocking, the reduction of interlayer distance is calculated by molecular dynamics (MD) simulation. Some atoms in Gr or BN are out-of-plane as well. In Raman measurements, the G peak in the heterostructure shows a red-shifted trend after laser shocking, indicating the strong phonon coupling in the interlayer. Moreover, the larger transparency after laser shocking also verifies the stronger photon coupling in the heterostructure. To investigate the effects of the interlayer coupling of heterostructure on its out-of-plane electronic behavior, we have investigated the electronic tunneling behavior. The heterostructure after laser shock reveals a lager tunneling current and lower tunneling threshold, proving an unexpected better electrical property. From DFT calculations, laser shocking can modulate the band gap structure of graphene in Gr/BN/Gr heterostructures; therefore, the heterostructures can be implemented as a unique photonic platform to modulate the emission characters of t
机译:在石墨烯和许多二维(2D)材料的出现中,最令人兴奋的应用来自将它们堆叠到3D器件中,这是对近音电子和光电子的许多优异的可能性。半导体,绝缘体和导体层可以堆叠以形成范德华异质结构,在层之间形成的弱键之后。然而,这些异质结构中的层间耦合通常很难调节,导致难以实现它们的出现光学或电子性质。特别是,由于缺乏有效技术,仍有待研究层间距离和层间耦合之间的关系。在这项工作中,我们使用激光震动来控制Gr / Bn / GR异质结构和2D异质体中的菌株中的石墨烯(GR)和氮化物(BN)之间的层间距离,提供简单有效的改变方法他们的光学和电子特性。在振动后,通过分子动力学(MD)模拟计算层间距离的减少。 GR或BN中的一些原子也是外平面。在拉曼测量中,异质结构中的G峰显示激光震动后的红色移位趋势,表明中间层中的强子耦合。此外,激光震动后的较大透明度也验证了异质结构中的较强的光子耦合。为了探讨异质结构的层间耦合对其外平面外电子行为的影响,我们研究了电子隧道行为。激光冲击后的异质结构揭示了Lager隧道电流和较低的隧道阈值,证明了意想不到的更好的电气。从DFT计算中,激光震动可以在GR / BN / GR异质结构中调节石墨烯的带隙结构;因此,异质结构可以实现为独特的光子平台以调制T的发射特征

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号