首页> 外文期刊>Nano letters >Large-Area, Ultrathin Metal-Oxide Semiconductor Nanoribbon Arrays Fabricated by Chemical Lift-Off Lithography
【24h】

Large-Area, Ultrathin Metal-Oxide Semiconductor Nanoribbon Arrays Fabricated by Chemical Lift-Off Lithography

机译:大面积,超超薄金属氧化物半导体纳米臂阵列由化学剥离光刻制造

获取原文
获取原文并翻译 | 示例
           

摘要

Nanoribbon- and nanowire-based field-effect transistors (FETs) have attracted significant attention due to their high surface-to-volume ratios, which make them effective as chemical and biological sensors. However, the conventional nanofabrication of these devices is challenging and costly, posing a major barrier to widespread use. We report a high-throughput approach for producing arrays of ultrathin (similar to 3 nm) In2O3 nanoribbon FETs at the wafer scale. Uniform films of semiconducting In2O3 were prepared on Si/SiO2 surfaces via a sol gel process prior to depositing Au/Ti metal layers. Commercially available high-definition digital versatile discs were employed as low-cost, large-area templates to prepare polymeric stamps for chemical lift-off lithography, which selectively removed molecules from self-assembled monolayers functionalizing the outermost Au surfaces. Nanoscale chemical patterns, consisting of one-dimensional lines (200 nm wide and 400 nm pitch) extending over centimeter length scales, were etched into the metal layers using the remaining monolayer regions as resists. Subsequent etch processes transferred the patterns into the underlying In2O3 films before the removal of the protective organic and metal coatings, revealing large-area nanoribbon arrays. We employed nanoribbons in semiconducting FET channels, achieving current on-to-off ratios over 10(7) and carrier mobilities up to 13.7 cm(2) V-1 s(-1). Nanofabricated structures, such as In2O3 nanoribbons and others, will be useful in nanoelectronics and biosensors. The technique demonstrated here will enable these applications and expand low-cost, large-area patterning strategies to enable a variety of materials and design geometries in nanoelectronics.
机译:基于纳米线和纳米线的场效应晶体管(FET)由于其高度的表面到体积比而引起了显着的关注,这使得它们作为化学和生物传感器有效。然而,这些器件的传统纳米制造是挑战性和昂贵的,造成广泛使用的主要障碍。我们报告了在晶片刻度上在2O3纳米架FET中产生超薄(类似于3nm)阵列的高通量方法。在沉积Au / Ti金属层之前,通过溶胶凝胶工艺在Si / SiO 2表面上制备半导体In2O3的均匀薄膜。商业上可获得的高清数字通用光盘作为低成本,大面积模板,为化学剥离光刻制备聚合物印章,其选择性地从官能化的自组装单层中除去分子。纳米级化学图案,包括沿厘米长度延伸的一维线(200nm宽和400nm间距),使用剩余的单层区域蚀刻到金属层中,如抗蚀剂。在去除保护性有机和金属涂层之前,随后的蚀刻工艺将图案转移到下面的IN2O3膜中,露出大区域纳米纸阵列。我们在半导体FET通道中使用纳米杆,以10(7)以上的电流导通比率和高达13.7cm(2)V-1s(-1)的载体迁移率。纳米制造结构,例如In2O3纳米杆和其他结构,可用于纳米电子和生物传感器。这里证明的技术将使这些应用能够扩展低成本,大面积的图案化策略,以实现纳米电子学中的各种材料和设计几何形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号