首页> 美国卫生研究院文献>other >Large-Area Ultrathin Metal-Oxide Semiconductor Nanoribbon Arrays Fabricated by Chemical Lift-Off Lithography
【2h】

Large-Area Ultrathin Metal-Oxide Semiconductor Nanoribbon Arrays Fabricated by Chemical Lift-Off Lithography

机译:化学剥离光刻技术制备的大面积超薄金属氧化物半导体纳米带阵列

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanoribbon- and nanowire-based field-effect transistors (FETs) have attracted significant attention due to their high surface-to-volume ratios, which make them effective as chemical and biological sensors. However, conventional nanofabrication of these devices is challenging and costly posing a major barrier to widespread use. We report a high-throughput approach for producing arrays of ultrathin (~3 nm) In2O3 nanoribbon FETs at wafer scale. Uniform films of semiconducting In2O3 were prepared on Si/SiO2 surfaces via a sol-gel process, prior to depositing Au/Ti metal layers. Commercially available HD-DVDs were employed as low-cost, large-area templates to prepare polymeric stamps for chemical lift-off lithography (CLL), which selectively removed molecules from self-assembled monolayers functionalizing the outermost Au surfaces. Nanoscale chemical patterns, consisting of one-dimensional lines (200 nm wide, 400 nm pitch) extending over centimeter length scales, were etched into the metal layers using the unpatterned monolayer regions as resists. Subsequent etch processes transferred the patterns into the underlying In2O3 films before removing the protective organic and metal coatings, revealing large-area nanoribbon arrays. We employed nanoribbons in semiconducting FET channels, achieving current on/off ratios over 107 and carrier mobilities up to 13.7 cm2 V−1 s−1. Nanofabricated structures, such as In2O3 nanoribbons and others, will be useful in nanoelectronics and biosensors. The technique demonstrated here will enable these applications and expand low-cost, large-area patterning strategies to enable a variety of materials and design geometries in nanoelectronics.
机译:基于纳米带和纳米线的场效应晶体管(FET)由于具有高的表面体积比,因此非常有效地用作化学和生物传感器,因此备受关注。然而,这些装置的常规纳米加工具有挑战性,并且昂贵地构成了广泛使用的主要障碍。我们报告了一种以晶圆规模生产超薄(〜3 nm)In2O3纳米带FET阵列的高通量方法。在沉积Au / Ti金属层之前,通过溶胶-凝胶工艺在Si / SiO2表面制备均匀的In2O3半导体薄膜。使用市场上可买到的HD-DVD作为低成本,大面积的模板,以制备用于化学剥离光刻(CLL)的聚合物印模,该印模可以选择性地从自组装的单层分子中去除分子,从而使最外层Au表面具有功能。使用未构图的单分子层区域作为抗蚀剂,将由一维线(200 nm宽,400 nm间距)延伸超过厘米长的刻度组成的纳米级化学图案蚀刻到金属层中。随后的蚀刻工艺将图案转移到下面的In2O3膜中,然后去除保护性有机和金属涂层,从而显示出大面积的纳米带阵列。我们在半导体FET通道中采用了纳米带,实现了超过10 7 的电流开/关比和高达13.7 cm 2 V -1 s的载流子迁移率 -1 。纳米制造的结构,例如In2O3纳米带等,将在纳米电子和生物传感器中有用。此处演示的技术将支持这些应用,并扩展低成本,大面积构图策略,以实现纳米电子中的各种材料和设计几何形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号