首页> 外文期刊>Medical Physics >SU‐C‐209‐05: Monte Carlo Model of a Prototype Backscatter X‐Ray (BSX) Imager for Projective and Selective Object‐Plane Imaging
【24h】

SU‐C‐209‐05: Monte Carlo Model of a Prototype Backscatter X‐Ray (BSX) Imager for Projective and Selective Object‐Plane Imaging

机译:SU-C-209-05:投影和选择性对象成像的原型反向散射X射线(BSX)成像器的蒙特卡罗模型

获取原文
获取原文并翻译 | 示例

摘要

Purpose: To develop a Monte Carlo N‐Particle (MCNP) model for the validation of a prototype backscatter x‐ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object‐plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x‐ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection in industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x‐ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x‐ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object‐plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material is based upon work supported under an Integrated University Program Graduate Fellowship sponsored by the Department of Energy Office of Nuclear Energy.
机译:目的:开发一个蒙特卡罗n粒子(MCNP)模型,用于验证原型反向散射X射线(BSX)成像器,以及用于医疗应用的BSX技术的优化,包括选择性对象平面成像。方法:BSX是一种新兴技术,它代表传统计算断层扫描(CT)和投影数字射线照相(DR)的替代方案。它采用位于与入射X射线源相同的侧面上的探测器,利用反向散射和避免环形几何形状包围成像对象。当前的BSX成像仪遭受低空间分辨率。 MCNP模型旨在复制用于工业材料中用于缺陷的BSX原型。该原型由1.5毫米直径的60kVP铅笔束组成,由四个5.0cm直径的Nai闪烁探测器环绕。成像幻影由2.9cm厚的铝板组成,中途钻取5.6厘米的孔5.6cm。使用光栅扫描运动(以1.5mm增量为单位)来创建实验图像。结果:物理和模拟图像之间的定性比较显示出与入射X射线束垂直于入射X射线束的平面中的1.5mm空间分辨率非常良好。 MCNP模型通过用于BSX的选择平面检测(RSP​​D)开发了射线照相的概念,由此可以通过改变KVP来成像特定的物体平面。平均X射线能量的10kev增量在幻像中产生4毫米的切片分辨率。通过增加探测器的数量,可以进一步提高MCNP模型中的图像分辨率,并降低光栅步长。结论:MCNP建模用于验证原型BSX成像器并介绍RSPD概念,允许选择性对象平面成像。实验和MCNP成像之间存在非常好的视觉协议。除了优化现有原型的系统参数之外,可以对医疗应用中的体积图像采集研究新几何。该材料基于由核能部能源办公室主办的综合大学计划研究生奖学金支持的工作基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号