Graphical '/> Uniformly electrodeposited α-MnO <ce:inf loc='post'>2</ce:inf> film on super-aligned electrospun carbon nanofibers for a bifunctional catalyst design in oxygen reduction reaction
首页> 外文期刊>Electrochimica Acta >Uniformly electrodeposited α-MnO 2 film on super-aligned electrospun carbon nanofibers for a bifunctional catalyst design in oxygen reduction reaction
【24h】

Uniformly electrodeposited α-MnO 2 film on super-aligned electrospun carbon nanofibers for a bifunctional catalyst design in oxygen reduction reaction

机译:均匀电沉积α-MnO 2 氧化物在氧还原反应中的双官能催化剂设计中的超级电纺碳纳米纤维膜

获取原文
获取原文并翻译 | 示例
           

摘要

Graphical abstractDisplay OmittedHighlights?A constant low-current (45μA) electrodeposition technique for 4h is used to form a uniform Na+ induced α-MnO2 film.?The as-prepared MnO2/ECNFs-glassy carbon catalyst system exhibits a 3.84-electron pathway near the theoretical limit.?Homogeneous surface coverage successfully allows hydrogen peroxide to be effectively confined.?A 4-electron pathway mechanism is proposed in this study.AbstractMetal oxide/carbonaceous nanomaterials are promising candidates for the oxygen reduction in energy converting systems. However, inhomogeneous surface coverage allows hydrogen peroxide to escape into the bulk solution due to unstable metal or metal oxide/carbonaceous nanomaterial synthesis, which limits their performance in fuel cells. Here, we show that the above problems can be mitigated through a stable low-current electrodeposition of MnO2on super-aligned electrospun carbon nanofibers (ECNFs). The key to our approach is coupling a self-designed four steel poles collector for aligned ECNFs and a constant low-current (45μA) electrodeposition technique for 4h to form a uniform Na+induced α-MnO2film. By using the cyclic voltammetry to proceed the electrocatalytic oxygen reduction reaction (ORR), the bifunctional catalysts show a 3.84-electron pathway due to the rapid decomposition of hydrogen peroxide by the uniform α-MnO2 film and ending with formation of water. This research may enable a practical catalyst with a large number of cycling of oxygen reduction/regeneration to reduce the risk of the fuel cell degradation and an effective confinement of oxygen and hydrogen peroxide in the catalyst matrix to maximize the energy output of the fuel cell.]]>
机译:<![cdata [ 图形抽象 显示省略 突出显示 4h的恒定低电流(45μA)电沉积技术用于形成均匀的Na +诱导的α-MnO2膜。 AS准备的MNO2 / ECN Fs-Glassy碳催化剂系统在理论极限附近呈现3.84型电子通路。 ?< / ce:标签> 均匀表面覆盖成功允许过氧化氢有效地限制。 在本研究中提出了一个4-Electron路径机制。 < CE:its-title id =“sect0015”>抽象 金属氧化物/碳质纳米材料是对能量转换系统的氧气减少的承诺候选者。然而,由于不稳定的金属或金属氧化物/碳质纳米材料合成,不均匀的表面覆盖物允许过氧化氢逸出到本体溶液中,这限制了它们在燃料电池中的性能。在这里,我们表明,通过MNO 2 在超级对准的电纺碳纳米纤维(ECNF)上的稳定低电流电沉积可以减轻上述问题。我们方法的关键是耦合自动设计的四个钢极收集器,用于对准的ECNF和恒定的低电流(45μA)电沉积技术,4小时形成均匀NA + 诱导α-mno 2 薄膜。通过使用循环伏安法进行电催化氧还原反应(ORR),双官能催化剂由于通过均匀α-MnO 2薄膜快速分解并以水的形成结束而产生的3.84-电子途径。该研究可以使具有大量氧还原/再生循环的实际催化剂,以降低燃料电池降解的风险和催化剂基质中的氧气和过氧化氢的有效限制,以最大化燃料电池的能量输出。 ]]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号