首页> 外文期刊>Journal of Physics. Condensed Matter >Impact of the carbon pore size and topology on the equilibrium quantum sieving of hydrogen isotopes at zero coverage and finite pressures
【24h】

Impact of the carbon pore size and topology on the equilibrium quantum sieving of hydrogen isotopes at zero coverage and finite pressures

机译:零覆盖和有限压力下碳孔径和拓扑结构对氢同位素平衡量子筛分的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Carbonaceous slit-shaped and square-shaped pores efficiently differentiate adsorbed hydrogen isotopes at 77 and 33 K. Extensive path integral Monte Carlo simulations revealed that the square-shaped carbon pores enhanced the selectivity of deuterium over hydrogen in comparison to equivalent slit-shaped carbon pores at zero coverage as well as at finite pressures (i.e. quantum sieving of hydrogen isotopes is pore-topology-dependent). We show that this enhancement of the D_2/H_2 equilibrium selectivity results from larger localization of hydrogen isotopes in square-shaped pores. The operating pressures for efficient quantum sieving of hydrogen isotopes are strongly dependent on the topology as well as on the size of the carbon pores. However, for both considered carbon pore topologies the highest D_2/H_2 separation factor is observed at zero-coverage limit. Depending on carbon pore size and topology we predicted monotonic decreasing and non-monotonic shape of the D_2/H_2 equilibrium selectivity at finite pressures. For both kinds of carbonaceous pores of molecular sizes we predict high compression of hydrogen isotopes at 77 and 33 K (for example, the pore density of compressed hydrogen isotopes at 77 K and 0.25 MPa in a square-shaped carbon pore of size 2.6 A exceeds 60 mmol cm-3; for comparison, the liquid density of para-H_2 at 30 K and 30 MPa is 42 mmol cm-3). Finally, by direct comparison of simulation results with experimental data it is explained why `ordinary' carbonaceous materials are not efficient quantum sieves.
机译:碳质缝隙和方形孔有效地区分了在77和33 K时吸附的氢同位素。广泛的路径积分Monte Carlo模拟显示,与同等缝隙状碳孔相比,方形碳孔提高了氘对氢的选择性在零覆盖率以及有限压力下(即氢同位素的量子筛分取决于孔拓扑)。我们表明,这种D_2 / H_2平衡选择性的增强是由于方形孔中氢同位素的较大局限性引起的。用于氢同位素的有效量子筛分的操作压力在很大程度上取决于拓扑结构以及碳孔的大小。然而,对于这两种考虑的碳孔拓扑,在零覆盖极限处观察到最高的D_2 / H_2分离因子。根据碳的孔径和拓扑结构,我们预测了在有限压力下D_2 / H_2平衡选择性的单调递减和非单调形状。对于两种分子大小的碳质孔隙,我们预测氢同位素在77和33 K时会发生高压缩(例如,在大小为2.6 A的方形碳孔中,压缩氢同位素在77 K和0.25 MPa时的孔密度超过60 mmol cm-3;为了比较,对-H_2在30 K和30 MPa时的液体密度为42 mmol cm-3。最后,通过将模拟结果与实验数据进行直接比较,可以解释为什么“普通”碳质材料不是有效的量子筛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号