首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >A study of trap-limited conduction influenced by plasma damage on the source/drain regions of amorphous InGaZnO TFTs
【24h】

A study of trap-limited conduction influenced by plasma damage on the source/drain regions of amorphous InGaZnO TFTs

机译:非晶InGaZnO TFT的源极/漏极区域受等离子体破坏影响的陷阱限制传导的研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This study investigated electrical characteristics and stability variations of amorphous indium gallium zinc oxide thin film transistors (a-IGZO TFTs) with plasma damage on their source/drain (S/D) regions. The influence of the plasma damage on the TFT performance is absent as the channel length is 36-100 mu m. When the channel length is decreased to 3-5 mu m, the mobility (mu) of the bottom gate TFT (BG TFT) with plasma damage is significantly degraded to 0.6 cm(2) (V s)(-1), which is much lower than 4.3 cm(2) (V s)(-1) of a damage-free BG TFT. We utilized the TFT passivation layer and the indium tin oxide (ITO), which was used as the pixel electrode material in the TFT backplane, to be the top gate insulator and top gate electrode of the defective BG TFT to obtain the defective dual-gate TFT. The mobility can be restored to 5.1 cm(2) (V s)(-1). Additional process steps are not required. Besides, this method is easily implemented and is fully compatible with TFT backplane fabrication process. The transfer curves, hysteresis characteristics, stabilities under constant voltage stress and constant current stress tests were measured to give evidences that the traps created by the plasma damage on the S/D regions indeed can affect electron transport. This trap-limited conduction can be improved by using the top gate. It was proven that the top gate was not for contributing an observably additional current. It was for inducing electrons to electrically passivate the plasma-induced defects near the back channel. Thus, the trapping/detrapping of the electrons transporting in the front channel can be reduced. The trap density near the Fermi level, hopping distance and hopping energy are 1.1 x 10(18) cm(-3) eV(-1), 162 angstrom, and 52 meV for the BG TFT with plasma damage on the S/D regions.
机译:这项研究调查了非晶铟镓锌氧化物薄膜晶体管(a-IGZO TFT)在源/漏(S / D)区域受到等离子体破坏的电特性和稳定性变化。当沟道长度为36-100μm时,没有等离子体损坏对TFT性能的影响。当沟道长度减小到3-5μm时,具有等离子体损坏的底栅TFT(BG TFT)的迁移率(mu)显着降低到0.6 cm(2)(V s)(-1),这是远低于无损BG TFT的4.3 cm(2)(V s)(-1)。我们利用TFT钝化层和铟锡氧化物(ITO)作为有缺陷的BG TFT的顶栅绝缘体和顶栅电极,将其用作TFT背板中的像素电极材料,以获得有缺陷的双栅TFT。迁移率可以恢复到5.1 cm(2)(V s)(-1)。不需要其他处理步骤。此外,该方法易于实现并且与TFT背板制造工艺完全兼容。测量了传输曲线,磁滞特性,在恒定电压应力和恒定电流应力测试下的稳定性,以提供证据表明,由于等离子体对S / D区域的破坏而形成的陷阱确实会影响电子传输。通过使用顶栅可以改善这种陷阱受限的传导。事实证明,顶栅不是用于提供明显的额外电流。这是为了感应电子使背面通道附近的等离子体感应缺陷电钝化。因此,可以减少在前沟道中传输的电子的俘获/俘获。对于在S / D区域受到等离子体破坏的BG TFT,费米能级附近的陷阱密度,跳跃距离和跳跃能量为1.1 x 10(18)cm(-3)eV(-1),162埃和52 meV。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号