...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Simultaneous measurements of OH(A) and OH(X) radicals in microwave plasma jet-assisted combustion of methane/air mixtures around the lean-burn limit using optical emission spectroscopy and cavity ringdown spectroscopy
【24h】

Simultaneous measurements of OH(A) and OH(X) radicals in microwave plasma jet-assisted combustion of methane/air mixtures around the lean-burn limit using optical emission spectroscopy and cavity ringdown spectroscopy

机译:使用光发射光谱和腔衰荡光谱法同时测量稀燃极限附近的甲烷/空气混合物在微波等离子体喷射辅助燃烧甲烷/空气混合物中的OH(A)和OH(X)自由基

获取原文
获取原文并翻译 | 示例
           

摘要

We report a new plasma-assisted combustion system, in which a continuous atmospheric argon microwave plasma jet is employed to enhance combustion of methane/air mixtures in different fuel equivalence ratios (φ) ranging from 0.35 to 1.5. The combustor has three distinct reaction zones along the jet axis (the combustion flame direction): the pure plasma zone, the hybrid plasma-flame zone and the combustion flame zone. Each of the three zones is clearly defined by its emission spectral fingerprints. The plasma zone was featured by strong emissions from OH and NH electronic bands and atomic lines of Ar, H _α and H_β. In the hybrid zone where the plasma jet met fuel mixtures, emission spectra were dominated by OH, NH and CN transitions and by weak or no atomic transitions. In the combustion flame zone, only weak OH emissions were observed. Simulations of optical emission spectroscopy (OES) yielded gas kinetic temperatures to be 1175 ± 50 K, 1450 ± 50 K and 1865 ± 50 K in each of the three zones, respectively. The plasma-enhancement effect was investigated by comparing the lean-burn limits of the combustion with and without plasma. At the same fuel mixture flow rate of 1.0 standard litre per minute and plasma power of 100 W, the lean-burn limit in terms of the fuel equivalence ratio φ was extended from 0.72 without assistance of the plasma to 0.35 with assistance of the plasma. In addition to OES that was employed to characterize the excited state species including OH(A) in the three different zones, pulsed cavity ringdown spectroscopy was utilized to measure absolute number densities of the ground state OH(X) using the OH A-X (0-0) R_2 (1) line in different locations in the flame zone at φ = 0.51, 0.87, 1.10 and 1.45. For rich and lean combustions, significantly different OH(X) number densities and density profiles in the flame zone were observed. At φ = 0.51, the OH(X, V″ = 0, J″ = 0.5) number density increased from 2.29 × 10~(15) molecule cm~(-3) at the combustor nozzle to the maximum, 3.13 × 10~(15) molecule cm~(-3) at 2 mm downstream, and to the lowest detectable level of 0.12 × 10~(15) molecule cm~(-3) in the far downstream where optical emissions were too weak to be detected. Results from the simultaneous measurements of the electronically excited state OH(A) and the ground state OH(X) allow us to discuss the roles of OH(A) and OH(X) in the plasma-assisted ignition and the flame stabilization, respectively.
机译:我们报告了一种新的等离子体辅助燃烧系统,其中采用了连续的大气氩气微波等离子体喷射来增强甲烷/空气混合物在0.35至1.5范围内的不同燃料当量比(φ)的燃烧。燃烧器沿射流轴(燃烧火焰方向)具有三个不同的反应区域:纯等离子体区域,混合等离子体火焰区域和燃烧火焰区域。三个区域中的每个区域均由其发射光谱指纹明确定义。等离子体区的特征是来自OH和NH电子带以及Ar,H_α和H_β原子线的强烈发射。在等离子流与燃料混合物相遇的混合区中,发射光谱受OH,NH和CN跃迁以及弱或无原子跃迁的控制。在燃烧火焰区域,仅观察到微弱的OH排放。在三个区域中的每个区域中,光发射光谱(OES)的模拟得出的气体动力学温度分别为1175±50 K,1450±50 K和1865±50K。通过比较有和没有等离子体的情况下燃烧的稀薄燃烧极限,研究了等离子体增强效果。在相同的燃料混合物流速为每分钟1.0标准升和等离子功率为100 W的情况下,根据燃料当量比φ的稀薄燃烧极限从无等离子辅助的0.72扩展到有等离子辅助的0.35。除了用于表征三个不同区域中包括OH(A)的激发态物质的OES之外,还利用脉冲腔衰荡光谱法使用OH AX(0- 0)在火焰区域中不同位置的R_2(1)线位于φ= 0.51、0.87、1.10和1.45。对于浓稀混合气燃烧,在火焰区域观察到明显不同的OH(X)数密度和密度分布。在φ= 0.51时,OH(X,V''= 0,J''= 0.5)的数密度从燃烧器喷嘴处的2.29×10〜(15)分子cm〜(-3)增加到最大,即3.13×10〜下游2 mm处有(15)分子cm〜(-3),而在远处下游的光发射太弱而无法检测到,最低检测水平为0.12×10〜(15)分子cm〜(-3)。同时测量电子激发态OH(A)和基态OH(X)的结果使我们能够讨论OH(A)和OH(X)分别在等离子体辅助点火和火焰稳定中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号