首页> 外文期刊>Current drug targets-The International journal for timely in-depth reviews on drug targets >HPC Analysis of Multiple Binding Sites Communication and Allosteric Modulations in Drug Design: The HSP Case Study
【24h】

HPC Analysis of Multiple Binding Sites Communication and Allosteric Modulations in Drug Design: The HSP Case Study

机译:药物设计中多个结合位点通讯和变构调节的HPC分析:HSP案例研究

获取原文
获取原文并翻译 | 示例
           

摘要

Allostery is a long-range macromolecular mechanism of internal regulation, in which the binding of a ligand in an allosteric site induces distant conformational changes in a distant portion of the protein, modifying its activity. From the drug design point of view, this mechanism can be exploited to achieve important therapeutic effects, since ligands able to bind allosteric sites may be designed to regulate target proteins. Computational tools are a valid support in this sense, since they allow the characterization of allosteric communications within proteins, which are essential to design modulator ligands. While considering long-range interactions in macromolecules, the principal drug design tool available to researcher is molecular dynamics, and related applications, since it allows the evaluation of conformational changes of a protein bound to a ligand. In particular, all-atoms molecular dynamics is suitable to verify the internal mechanisms that orchestrate allosteric communications, in order to identify key residues and internal pathways that modify the protein behaviour. The problem is that these techniques are heavily time-consuming and computationally intensive, thus high performance computing systems, including parallel computing and GPU-accelerated computations, are necessary to achieve results in a reasonable time. In this review, we will discuss how it is possible to exploit in silico approaches to characterize allosteric modulations and long-range interactions within proteins, describing the case study of the Heat Shock Proteins, a class of chaperons regulated by stress conditions, which is particularly important since it is involved in many cancers and neurodegenerative diseases.
机译:变构是内部调节的长距离大分子机制,其中变构位点中的配体结合在蛋白质的远处部分诱导远处的构象变化,从而改变其活性。从药物设计的角度来看,可以利用这种机制来实现重要的治疗效果,因为可以将能够结合变构位点的配体设计为调节靶蛋白。从这个意义上说,计算工具是有效的支持,因为它们可以表征蛋白质内的变构通讯,这对于设计调节剂配体至关重要。在考虑大分子之间的远程相互作用时,研究人员可以使用的主要药物设计工具是分子动力学及其相关应用,因为它可以评估与配体结合的蛋白质的构象变化。特别是,所有原子的分子动力学都适合验证编排变构通讯的内部机制,以便识别修饰蛋白质行为的关键残基和内部途径。问题在于这些技术非常耗时且计算量大,因此需要高性能的计算系统(包括并行计算和GPU加速计算)才能在合理的时间内获得结果。在这篇综述中,我们将讨论如何利用计算机方法来表征蛋白质中的变构调节和远距离相互作用,并描述热激蛋白(一类受压力条件调节的分子伴侣)的案例研究。重要,因为它涉及许多癌症和神经退行性疾病。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号