...
首页> 外文期刊>Journal of Molecular Biology >Crystal structure of the archaeal asparagine synthetase: interrelation with aspartyl-tRNA and asparaginyl-tRNA synthetases.
【24h】

Crystal structure of the archaeal asparagine synthetase: interrelation with aspartyl-tRNA and asparaginyl-tRNA synthetases.

机译:古细菌天冬酰胺合成酶的晶体结构:与天冬氨酰-tRNA和天冬酰胺基-tRNA合成酶的相互关系。

获取原文
获取原文并翻译 | 示例
           

摘要

Asparagine synthetase A (AsnA) catalyzes asparagine synthesis using aspartate, ATP, and ammonia as substrates. Asparagine is formed in two steps: the beta-carboxylate group of aspartate is first activated by ATP to form an aminoacyl-AMP before its amidation by a nucleophilic attack with an ammonium ion. Interestingly, this mechanism of amino acid activation resembles that used by aminoacyl-tRNA synthetases, which first activate the alpha-carboxylate group of the amino acid to form also an aminoacyl-AMP before they transfer the activated amino acid onto the cognate tRNA. In a previous investigation, we have shown that the open reading frame of Pyrococcus abyssi annotated as asparaginyl-tRNA synthetase (AsnRS) 2 is, in fact, an archaeal asparagine synthetase A (AS-AR) that evolved from an ancestral aspartyl-tRNA synthetase (AspRS). We present here the crystal structure of this AS-AR. The fold of this protein is similar to that of bacterial AsnA and resembles the catalytic cores of AspRS and AsnRS. The high-resolution structures of AS-AR associated with its substrates and end-products help to understand the reaction mechanism of asparagine formation and release. A comparison of the catalytic core of AS-AR with those of archaeal AspRS and AsnRS and with that of bacterial AsnA reveals a strong conservation. This study uncovers how the active site of the ancestral AspRS rearranged throughout evolution to transform an enzyme activating the alpha-carboxylate group into an enzyme that is able to activate the beta-carboxylate group of aspartate, which can react with ammonia instead of tRNA.
机译:天冬酰胺合成酶A(AsnA)使用天冬氨酸,ATP和氨作为底物催化天冬酰胺合成。天冬酰胺分两步形成:天冬氨酸的β-羧酸根首先被ATP活化形成氨酰基-AMP,然后再被铵离子的亲核攻击酰胺化。有趣的是,这种氨基酸激活机制类似于氨酰基-tRNA合成酶所使用的机制,先将氨基酸的α-羧酸酯基激活以形成氨基酰-AMP,然后再将活化的氨基酸转移到同源tRNA上。在先前的研究中,我们表明,毕赤热球菌(Pyrococcus abyssi)的开放阅读框注为天冬酰胺基tRNA合成酶(AsnRS)2,实际上是古细菌天冬酰胺合成酶A(AS-AR),它是从祖先的天冬氨酰tRNA合成酶进化而来的(AspRS)。我们在这里介绍该AS-AR的晶体结构。该蛋白质的折叠类似于细菌AsnA的折叠,类似于AspRS和AsnRS的催化核心。 AS-AR的高分辨率结构及其底物和最终产物有助于理解天冬酰胺形成和释放的反应机理。 AS-AR的催化核心与古细菌AspRS和AsnRS的催化核心以及细菌AsnA的催化核心的比较显示出很强的保守性。这项研究揭示了祖先AspRS的活性位点在整个进化过程中如何重排,以将激活α-羧酸酯基团的酶转变为能够激活天冬氨酸的β-羧酸酯基团的酶,该酶可以与氨水而不是tRNA反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号